# MEASURES OF DISEASE FREQUENCY 

Infectious Disease Epidemiology Bootcamp<br>Session 3<br>July 21, 2020<br>Meghan Warren, PT, MPH, PhD

## INFECTIOUS DISEASE EPIDEMIOLOGY BOOTCAMP OBJECTIVES

1. Explain the basics of infectious disease epidemiology, including transmission and conceptual model.
2. Evaluate infectious disease measures (e.g., R-naught, case fatality, incidence)
3. Explain the importance of controlling infectious disease spread through quarantine, vaccination, and other treatment measures
4. Describe the process of testing, case investigation, and contact tracing for infectious diseases
5. Compare sensitivity, specificity, and positive and negative predictive value of screening tests
6. Understand the concepts of database construction and data entry for quality data reporting
7. Interpret data tables and charts related to infectious disease measures

## REMEMBER TO JOIN US FOR THE LAST BOOTCAMP!

- Tuesday, July 28 at 11:30 PDT - Getting the Most Out of Your Data
- Data interpretation
- Data visualization



## IF YOU HAVE QUESTIONS

- Use the chat function
-We want to hear from you ©
- Questions will be answered at the end during a discussion period in the order they come in


## Objectives

1. Review math terms associated with measures of disease frequency
2. Define and interpret prevalence, incidence, and incidence rate
3. Explain the relationship between prevalence and incidence
4. Explain and interpret
5. Mortality
6. Case fatality
7. Percent positivity

## What we will not cover

- Risk
- "the probability of an event during a specified period of time"

Cole SR, et al. Risk. Am J Epidemiol. 2015;181(4):246-50

- Who is at increased/decreased risk of COVID over time?


## Epidemiology

- Epi: on or upon
- Demos: people
- Logos: the study of
- Study of what befalls a population
"Epidemiology is the study of the distribution and determinants of health-related states or events in specified populations, and the application of this study to the control of health problems." ${ }^{\circ} 61$ (Last JM. Dictionary
of Epidemiology, $4^{\text {th }}$ ed. New York: Oxford University Press; 2001.)


## DESCRIPTIVE EPIDEMIOLOGY



## BOX IT IN! - DISEASE CONTROL



## OUTBREAK INVESTIGATION

- Who has it, why they have it, and what can be done about it



## OUTBREAK INVESTIGATION: REALITY

- Who has it, why they have it, and what can be done about it



## MEASURES OF DISEASE FREQUENCY



N/AI NORTHERN ARIZロNA LNIVERSITY



NAA ${ }_{\text {NORTHERN ARIZONA UNIVERSITY }}$

## REVIEW



- Numerator = top number
- Denominator $=$ bottom number


## Ratios <br> PROPORTIONS \& RATES

- Ratio: dividing one number by another
- Does not imply a relationship between the numerator and denominator
- Example: body mass index (BMI) = weight/height
- Proportion: relates to parts of a whole
- Often expressed as a percentage
- Example: 20 cases of the flu in a nursing home of 130 residents
- 20 cases/130 people = the prevalence of flu in the nursing home is $15 \%$
- Rate: denominator takes into account another dimension
- Often time
- Example

1. Motor vehicle deaths per vehicle-miles
2. Number of sports injuries per athlete exposures

## Count



| State | Number of cases of COVID (as of July 12) <br> Since 1/21/20 |
| :--- | :---: |
| California | 320,804 |
| Arizona | 122,467 |
| Utah | 30,177 |
| Nevada | 27.894 |

## COUNT

What is a count good for?

- Identify when there is excess disease

Coconino County cases per day, as of July 12

- Identifying distribution of disease
- Person, place, time
- Resource allocation
- How many case investigators and contact tracers need to be hired?
https://preventepidemics.org/covid19/resources/contact-tracing-staffing-calculator/
- When the population is stable
- When no comparison is required


## COUNT

What is a count good for?

- Identify when there is excess disease
- Identifying distribution of disease
- Person, place, time
- Resource allocation
- How many case investigators and contact tracers need to be hired?
https://preventepidemics.org/covid19/resources/contact-tracing-staffing-calculator/
- When the population is stable
- When no comparison is required

What are limitations of a count?

- Comparing different populations


## Prevalence

- Proportion of the population that has disease at a particular time
- Overall burden of disease in a population

Prevalence (a proportion)
= People \# People with disease at a point in time
Total People \# People in the study population

- Often expressed per 1,000 (or 10,000 or 100,000) people

| State | Number of cases of <br> CoVID (as of July 12) <br> Since 1/21/20 | Population | Prevalence of COVID <br> per 100,000 people |
| :--- | ---: | ---: | ---: |
| California | 320,804 | $39,556,597$ | 811.0 |
| Arizona | 122,467 | $7,171,459$ | $1,707.7$ |
| Utah | 30,177 | $3,161,219$ | 954.6 |
| Nevada | 27,894 | $3,034,265$ | 919.3 |




NATMORTHERN ARIZONA UNIVERSITY

## INCIDENGE

- Occurrence of new cases during a period of time

1. Incidence proportion (cumulative incidence): probability of developing disease over a stated period of time - Estimate of risk

- Must specify a time period

Cumulative Incidence (a proportion)
= People \# new cases in a specified period Total People \# People (at risk) in the study population

## INCIDENCE OF COVID

| State | Number of cases of COVID (as of July 12) Since 1/21/20 | Number of new cases in the past 7 days | Population | Prevalence of COVID per 100,000 people | Incidence of COVID per 100,000 people ${ }^{* * *}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| California | 320,804 | 60,649 | 39,556,597 | 811.0 | 153.3 |
| Arizona | 122,467 | 24,378 | 7,171,459 | 1,707.7 | 339.9 |
| Utah | 30,177 | 4,677 | 3,161,219 | 954.6 | 147.9 |
| Nevada | 27,894 | 5,248 | 3,034,265 | 919.3 | 173.0 |

***** $=$ caution
Cumulative Incidence (a proportion)
= People \#new cases in a specified period Total People \# People (at risk) in the study population

## POPULATION AT RISK EXAMPLE

- Nursing home with 800 residents
- Blood tests for diabetes
- Fasting glucose
- A1C
- 50 residents had diabetes
- Prevalence $=50 / 800$
$=0.63$
= 63/100 people
= 6.3\%
- Incidence of diabetes in the residents over 12 months
- Going to assume no one moves away or dies in a year
- 25 residents are diagnosed with diabetes in 12 months
- Incidence $=25 / 750$
$=0.33$
= 33/100 people
= 3.3\%


## INCIDENCE

| State | Number of cases of COVID (as of July 12) Since 1/21/20 | Number of new cases in the past 7 days | Population | Prevalence of COVID per 100,000 people | Incidence of COVID per 100,000 people**** |
| :---: | :---: | :---: | :---: | :---: | :---: |
| California | 320,804 | 60,649 | 39,556,597 | 811.0 | 153.3 |
| Arizona | 122,467 | 24,378 | 7,171,459 | 1,707.7 | 339.9 |
| Utah | 30,177 | 4,677 | 3,161,219 | 954.6 | 147.9 |
| Nevada | 27,894 | 5,248 | 3,034,265 | 919.3 | 173.0 |
|  |  | Cumulative Incidence (a proportion) <br> = People \# new cases in a specified period <br> Total People \# People (at risk) in the study population |  |  | $\begin{aligned} & * * * * *=\text { need } \\ & \text { population at risk } \end{aligned}$ |





Cases in Last 7 days

NAII NORTHERN ARIZGNA UNIVERSITY

## INCIDENCE

- Occurrence of new cases during a period of time

1. Incidence proportion (cumulative incidence): probability of developing disease over a stated period of time

- Estimate of risk
- Must specify a time period

2. Incidence rate: number of new cases per unit of time

Cumulative Incidence (a proportion)
= People \# new cases in a specified period Total People \# People (at risk) in the study population

Incidence Rate (a rate) number of new cases of disease person-time at risk

## INGIDENCE RATE (AND INCIDENCE DENSITY)

- In studies or communities, people are often followed for different lengths of time
- Move away
- Move away and then come back
- Drop out
- Death
- Births
- Good when there are dynamic populations
- Or long follow-up times

Incidence Rate (a rate)
number of new cases of disease
person-time at risk

## HIV in A BROTHEL: 15 wOMEN TESTED; 5 HAD HIV



- Cumulative incidence over 6 years $=4 / 10=0.4=4$ cases per 10 people $=40 \%$


## HIV in A BROTHEL: 15 wOMEN TESTED; 5 HAd HIV

|  | Follow-up |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Participant | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | Disease-free years |
| 1 | -------------- | + ------------ | -------------- | -------------- | -------------- | -------------- | 1 |
| 2 | -------------- | ? |  |  |  |  | 1 |
| 3 | ------------- | ------------- | + ------------ | ------------- | ------------- | ------------- | 2 |
| 4 | -------------- | ? |  |  |  |  | 1 |
| 5 | -------------- | -------------- | -------------- | ? |  |  | 3 |
| 6 | -------------- | -------------- | -------------- | -------------- | -------------- | ? | 5 |
| 7 | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | 6 |
| 8 | ------------- | ------------- | ------------- | ------------- | ------------- | ? | 5 |
| 9 | -------------- | + ------------ | -------------- | -------------- | -------------- | -------------- | 1 |
| 10 | -------------- | + ------------- | -------------- | -------------- | -------------- | ? | 1 |

- Incidence rate $=4$ cases of $\mathrm{HIV} / 26$ person-years $=0.15=15 / 100$ person-years


## INTERRELATIONSHIP BETWEEN PREVALENCE AND INCIDENCE

- Prevalence depends on:
- New disease during a time period (incidence)
- Duration of disease
- Incidence is low, but those with it have it for a long time $\rightarrow$ prevalence high relative to incidence
- Type 2 diabetes


Fig. 2. Relationship between incidence and prevalence.

## CATEGORY-SPECIFIC MEASURES

- Categories can be anything (e.g., sex, geographic areas)

$$
\begin{gathered}
\text { Age and Race/Ethnicity of COVID in Navajo county } \\
\text { Population }=110,924 \\
\text { Prevalence }=3,860.0 / 100,000 \text { population }
\end{gathered}
$$



Select a county to filter the other graphs.
Graphs will not be displayed for counties with fewer than 10 cases.
COVID-19 Cases by Age Group


| Age groups | Number <br> of cases | Population <br> estimates** | Prevalence per <br> 100,000 population |
| :--- | ---: | ---: | ---: |
| $<20$ y/o | 644 | 29,173 | $2,207.5$ |
| $20-64$ y/o | 3,151 | 60,897 | $5,174.3$ |
| $>64$ y/o | 549 | 20,854 | $2,632.6$ |

Unknown 11

## MEASURES OF MORTALITY

## MORTALITY ‘RATES’

1. Mortality

- Overall burden of death
\# of deaths
Population size
- Typically expressed per 1,000 or 100,000 people
- Or percent

2. Case fatality

- Measure of disease severity
\# of deaths from a specific disease
\# of people with the disease
- Typically expressed as a percent


## MORTALITY VS. CASE FATALITY RATE

## Mortality Rate vs Case Fatality Rate



## AZ MORTALITY ‘RATES’

- Population of Arizona = 7,171,459
- Number of COVID cases $=123,824$
- Number of COVID deaths $=2,245$
- Mortality 'rate' $=2,245 / 7,171,459$

$$
\begin{aligned}
& =0.000313 \\
& =31.3 / 100,000
\end{aligned}
$$

- Case fatality 'rate’ $=2,245 / 123,854$

$$
\begin{aligned}
& =0.01812 \\
& =1.8 \%
\end{aligned}
$$

## COVID-19 Deaths



COVID-19 Deaths by Gender


COVID-19 Deaths by Age Group



## A CHANGING PANDEMIC

- Since December 2019, case fatality
- 15\%, but in patients who were hospitalized
- 4.3 - 11.0\%, but this was early (China)
- 0.4\% in February (worldwide)
- 0.99\% on Diamond Princess cruise ship

Rajgor DD, et al. The many estimates of the COVID-19 case fatality rate. Lancet Infect Dis. 2020;20(7): 776-7.

- Case fatality estimated between $0.06 \%$ and $18.94 \%$

Oke J, Heneghan C. Global COVID-19 Case Fatality Rates. Available at: https://www.cebm.net/covid-19/global-covid-19-case-fatality-rates/. Accessed July 13, 2020.

## How does it compare?

- Compared to other viral disease

$-$
severe seasonal influenza and 1957 and 1968 influenza (case fatality < 0.1\%)

SARS (2002-3; 9\% - 10\%) and MERS (2012 - present; 36\%)

NORTHERN ARIZロNA LNIVERSITY

## PERCENT POSITIVE

## PERCENT POSITIVITY

- Percentage of tests that were positive \# of positive tests
\# of completed tests
- Sometimes referred to as positivity rate
- But it is not actually a rate
- Indicator into whether a community is conducting enough testing to find cases
- High: may largely be testing the sickest patients and possibly missing milder or asymptomatic cases
- Not casting a wide enough net
- Low: including patients with milder or no symptoms
- Sufficient testing capacity for the size of the outbreak

WHAT IS LOW PERCENT POSITIVITY?

N/AII NORTHERN ARIZGNA UNIVEREITY

## PERCENT POSITIVITY FOR EPIDEMIC CONTROL

## Epidemiological criteria

Decline of at least $50 \%$ of a 3-week period since the latest person and continuous decline in incidences of confirmed and probable cases

Less than 5\% of samples positive for COVID-19, at least for the last 2 weeks (assuming that surveillance for suspected cases is comprehensive)
At least $80 \%$ of cases are from contact list and can be linked to known clusters
Decline in the number of deaths among confirmed and probable cases at least for the last 3 weeks
Continuous decline in the number of hospitalizations and ICU admissions of confirmed and probable cases at least for the last 2 weeks

Among others....

World Health Organization. Public Health Criteria to Adjust Public Health and Social Measures in the Context of COVID-19. Available at: https://www.who.int/publications/i/item/public-health-criteria-to-adjust-public-health-and-social-measures-in-the-context-of-covid-19. Accessed 7/13/20.

## PERCENT POSITIVITY BY STATE



This page was last updated on Sunday, July 19, 2020 at 3:00 AM EDT.

## CASE POSITIVITY COMPARISON


https://coronavirus.jhu.edu/testing

## TO REVIEW

| Frequency measure | Numerator | Denominator |
| :--- | :--- | :--- |
| Prevalence | Number of people with COVID | Number of people in the population |
| Incidence | Number of new cases with COVID | Number of people at risk for COVID |
| Incidence rate (density) | Number of new cases with COVID | Follow-up (person-time) or other exposure |
| Mortality | Number of people who died from COVID | Number of people in the population |
| Case fatality | Number of people who died from COVID | Number of people with COVID |
| Percent positivity | Number of people with a positive COVID test | Number of people who were tested for COVID |

Remember to look at the time period being reported

## BUt ALL OF THESE ARE ESTIMATES!

1. Number of people with COVID (Prevalence, incidence, incidence rate, case fatality, percent positivity)

- Probably an underestimate
- Testing capacity/availability
- Testing policies
- Asymptomatic people
- Accuracy of the tests
- Case definition of 'with COVID'
- Confirmed case
- Probable case

2. Number of people who died from COVID (Mortality and case fatality)

- Competing conditions
- Death certificate availability/accuracy

3. Number of people with a positive COVID test (Percent positivity)

- Accuracy of the tests


## BUT ALL OF THESE ARE ESTIMATES!

- Number of people in the population (Prevalence and mortality)
- May be OK, except for dynamic population
- \# of people in Flagstaff in Feb 2020 vs. July 2020
- Census population
- Number of people at risk for COVID (Incidence)
- Who is 'at risk?'
- Current disease
- Immunity after disease
- Deaths and births
- Number of people tested for COVID
- Traveling


## FUTURE?

- Much has to be done to better understand the epidemiology and science of COVID-19
- But that does not mean that interventions should not be implemented and continued!!!
\(\left.$$
\begin{array}{|c|c|}\hline \begin{array}{c}\text { Identify the } \\
\text { source of the } \\
\text { outbreak }\end{array} \\
\longrightarrow\end{array}
$$ \longrightarrow \begin{array}{c}Monitor and <br>
track the <br>

disease\end{array}\right] \xrightarrow{Study the}\)| disease |
| :--- |

## Develop

 interventionsto slow
disease spread \&
"I'm actually of the mind right now, I think this [COVID-19] is more like a forest fire. I don't think that this is going to slow down. I'm not sure that the influenza analogy applies anymore. I think that wherever there is wood to burn, this fire is going to burn. And right now we have a lot of susceptible people." - M. Osterholm, 6/21/20

## REFERENCES

- Many in slide citations

1. Friis RH, Sellers TA. Epidemiology for Public Health Practice. $4^{\text {th }}$ ed. Sudbury, MA: Jones and Bartlett Publishers; 2009.
2. Gordis L. Epidemiology. 2 ${ }^{\text {nd }}$ ed. Philadelphia: WB Saunders Co; 2000.

## Objectives

1. Review terms associated with measures of disease frequency
2. Define and interpret prevalence, incidence, and incidence rate
3. Explain the relationship between prevalence and incidence
4. Explain and interpret
5. Mortality
6. Case fatality
7. Percent positivity

## ACKNOWLEDGMENTS

- Drs. Ricky Camplain and Brettania O'Connor
- Lisa Dahm
- Kate Compton-Gore
- Dr. Samantha Sabo
- Dr. Julie Baldwin and the Center for Health Equity Research
- The Southwest Health Equity Research Collaborative (SHERC)


## Thank You!

## Questions?

meghan.warren@nau.edu

NAU NORTHERN ARIZGNA UNIVERSITY

## CASE DEFINITION: CONFIRMED VS. PROBABLE CASES

Confirmed case

- Person who had a confirmatory viral test performed
- Positive for SARS-CoV-2, which is the virus that causes COVID-19
- Probable case
- Meet clinical criteria AND epidemiological evidence
- NO confirmatory laboratory testing performed
- Meet presumptive laboratory evidence, AND either clinical criteria OR epidemiological evidence
- Vital records criteria
- No confirmatory laboratory testing performed for COVID-1

