## Graduate Programs Instructional Framework (2020-2021) Center for Science Teaching and Learning



### **Elements of Ambitious Science Teaching**

provide a shared image of rigorous and equitable science instruction

#### ANCHOR LEARNING

Teachers anchor students' learning experiences in complex and puzzling science phenomena.

### STUDENTS' IDEAS USED AS RESOURCES

Students' hypotheses, experiences, cultural knowledge, and questions are treated as resources to help the class build toward big science ideas.

#### TALKING IS THINKING

Teachers provide varied opportunities for students to reason through talk.

# STUDENTS ENGAGE IN SCIENCE PRACTICES FOR A PURPOSE

Students use ensembles of scientific practices for testing ideas they believe are important to their developing explanations and models.

# MAKING THINKING VISIBLE AND "WORK ON IDEAS" TOGETHER

Student thinking is made visible and subject to commentary by the classroom community.

#### SCAFFOLD TALK, WRITING, & PARTICIPATION

Students have access to specialized tools and routines that support their science writing, talk, and participation in activity.

# COMPLEX UNDERSTANDINGS GET BUILT OVER TIME

Learning experiences are selected to help students build toward cumulative and nuanced understandings of big science ideas.

### **Instructional Design Strategies**

occur before unit and lesson planning and enable effective instruction

- Identifying big ideas in science
- Selecting complex and puzzling science phenomena to anchor instruction
- Selecting and adapting appropriate tasks and technologies
- Planning for uncertainty in tasks
- Preparing for safe and meaningful engagement in science and engineering practices

### **Instructional Sequences**

provide an overall structure to a unit of instruction

- Eliciting students' initial ideas
- Supporting on-going changes in thinking
- Pressing for evidence-based explanations

#### **Instructional Activities**

rehearsable activities that occur during a lesson and provide an overall structure to lessons

- Facilitating small and whole group discussions for a purpose *(eliciting, sense-making, etc.)*
- Facilitating effective openers and closures of lessons
- Monitoring, selecting, and sequencing small group work for a purpose
- Effectively launching a task
- Facilitating effective share-out sessions
- Enacting meaningful "just-in-time" instruction
- Enacting formative assessment tools to inform instruction

### **High-Leverage Practices and Strategies**

occur moment-to-moment, are central to effective teaching, and provide a common language for talking about teaching

- Teaching toward a clear learning goal
- Representing student reasoning
- Constructing and organizing public records
- Eliciting and responding to student ideas
- Orienting students to one another and to the discipline
- Positioning students as sense-makers
- Making sense of students' participation to inform instruction
- Making connections explicit (big idea, phenomena, nature of science, etc.)
- Managing time and pacing

### **Strategies**

(used across practices)

- Using <u>discourse moves</u> in whole class and small group settings (probing, pressing, revoicing, adding on, agree or disagree, putting an idea on hold, wait time)
- Using appropriate <u>questioning</u> (low/high cognitive demand)
- Using <u>participation structures</u> for a purpose (individual, small group, whole group, share-out, gallery walk, etc.)

# Graduate Programs Instructional Framework (2020-2021) Center for Science Teaching and Learning



