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ABSTRACT

AN OVERVIEW OF SCRAMBLING PROCESSES IN CODE BASED
CRYPTOGRAPHY

MARCELA GUTIERREZ

In this thesis we explore and analyze the scrambling processes used in code
based cryptography. Cryptography is the study of finding secure ways to send
confidential information. Code based cryptography refers to cryptosystems that
rely on the hardness of decoding linear codes in order to keep processes secure.
Many public key cryptosystems that have been proposed for the post-quantum
era are based on code based cryptography. One way code based cryptosystems are
made more secure is by scrambling. Scrambling refers to the various techniques
used to hide the structure of a code and ultimately the information that was
sent. We will first analyze and discuss a few of the more influential scrambling
processes that have been employed in various cryptosystems within the literature.
We also look at one recent cryptosystem in particular that brings a new approach
to scrambling, by defining a new operation as part of their cryptosystem. Thus,
instead of hiding the code, as is done in almost all classical schemes, they hide
the ciphertext. This cryptosystem serves as the inspiration for our research. We
will propose a new family of cryptosystems that can be generalized based on a
potential operation we have found. In addition we will provide a comparative
study of all the scrambling processes that are being used in the code based
cryptosystems that are in the final stages of the post-quantum competition run
by the National Institute of Standards and Technology.
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Chapter 1

Introduction

1.1 Preliminaries

Coding theory is the study of transmitting data over noisy channels and recovering the
message that was sent over the channel. This is often referred to as the study of error
correcting codes. The field came about in response to an engineering problem. The main
concern was being able to transmit digital information reliably over noisy channels while still
being able to detect and correct the errors that occur in the transfer. Coding theory has many
applications in communication systems. A few of these include satellite communications, cell
phones, data compression, and others. The first main papers that marked the beginning of
coding theory can be contributed to Shannon and Hamming [20, 33].

Cryptography on the other hand is the study of methods used to keeping information
secure and confidential while transmitting information. One way we do this is through
codes. Cryptography has many applications in the modern world. In today’s world we
often transmit data through electronic systems whether that be cell phones or computers.
An example of this is when we put our credit card information online to buy products.
Essentially, most of the information on the internet, in banks, and so on are kept secure
by cryptosystems that are put in place in the modern world. This topic will continue to
be relevant as we continue to rely more on communicating electronically. Because of the
desire to keep cryptosystems secure for the future, the National Institute of Standards and
Technology (NIST) is holding a contest to create more secure cryptosystems using codes so
that our data is more secure in the modern world.

This thesis will explore the various methods that are used to keep cryptosystems secure
which we will call scrambling. Scrambling is the process of hiding a codes structure in order
to disguise it. This can be done in various different ways. For instance, The McEliece
Cryptosystem disguises the generator matrix of a code by multiplying it by a scrambler
matrix and a permutation matrix and giving the resulting matrix to the public [21]. In this
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case it is essential the generator matrix is disguised so that an attacker can not simply detect
what code is used based on the structure of its generator matrix. However, this is not the
only way to hide the structure of a code. Scrambling can be done in many different ways
and is not limited to just the key generation phase. We will explore other methods that
will be used later in the paper. Scrambling has become an important aspect of the security
of a cryptosystem. Hiding the structure of a code is important so that an attacker cannot
just figure out what code was used, use the decryption algorithm for that well known code,
and then recover the message instantly. So the security of a cryptosystem relies on how well
one can disguise the code while still being able to use that code within our cryptosystem.
Because of this, the various ways people attempt to scramble will play an influential role in
how our data is kept secure in the future.

In the first chapter of the thesis we start by providing some key definitions and terms in
coding theory. Later, we will discuss a few of the different types of codes such as Hamming,
Goppa, and more that are referenced in this paper. We will then provide some background
on code based cryptography and talk about one of the major public key cryptosystems: the
McEliece Cryptosystem as well as its variations. In Chapter 2, we look at three different
cryptosystems along with their scrambling techniques that inspired our research. In the
next section we will begin to discuss a few of the different scrambling methods that exist
today. One of the techniques we focus on uses the technique of scrambling the ciphertext.
We will go more in depth with this cryptosystem as it was the inspiration for the attempted
construction of our new cryptosystem. Next, in Chapter 3, we discuss our efforts in at-
tempting to generalize a cryptosystem that scrambles the ciphertext. We then propose what
we believe the structure of our cryptosystem should have in order to increase security. In
Chapter 4, we will provide an overview of the submitted round 3 proposed cryptosystems in
the NIST competition. We then compare each of the scrambling techniques used in these
future cryptosystems. Finally, we wrap up the paper by providing some directions for future
work in related fields.

1.2 Coding Theory

There are three main components to coding theory: encoding the message, decoding the
message, which is also called the error correction phase, and recovering the original message
that was sent. We give a few definitions and concepts that are essential in coding theory.
First we must define what a code is. Let q = pm be a prime power and let GF (q) = Fq
denote the finite field of size q.

Definition 1.2.1. A code of length n over Fq is a subset of Fnq .
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Because of their structural advantages, throughout much of coding theory, liner codes
are generally preferred.

Definition 1.2.2. A linear code C over Fq of length n is a vector subspace of Fnq .

Definition 1.2.3. A vector c = (c0, c1, . . . , cn−1) in C is called a codeword of C.

Binary codes are codes over F2 and ternary codes are codes over F3. More generally, q-ary
codes are codes over Fq. If C is a k-dimensional subspace of Fnq , then C is an [n, k]q code.

Definition 1.2.4. The dual code of C is the orthogonal complement of the subspace of C
of Fnq .

Definition 1.2.5. A generator matrix G for a linear code C is a matrix whose rows form a
basis for C.

Every generator matrix can be put into a standard form using elementary row and column
operations. Elementary row operations leave the code invariant as a subspace while the
column operations transform the code to an equivalent form. Two codes are equivalent if
one can be obtained from the other by a permutation of coordinates or by multiplying a
column by a scalar. Thus any [n, k]-linear code over Fq is equivalent to a code that has a
systematic generator matrix. A systematic generator matrix is of the form [Ik|A] where Ik
is the k × k identity matrix and A is a k × (n− k)-matrix over Fq.

Definition 1.2.6. The parity check matrix H of a code C is the matrix whose rows form a
basis for the dual of C. In other words c is a codeword if and only if HcT = 0.

A parity check matrix of the form H = [−AT |In−k] is in standard form. It is natural
to see a linear code expressed in terms of its parity check matrix or its generator matrix
since one can be obtained from the other when in standard form. Below are other types of
matrices.

Definition 1.2.7. A sparse matrix is a matrix where most of the elements are zero, i.e.,
the ratio of non-zero terms is smaller than a given upper bound.

Definition 1.2.8. A dense matrix is a matrix where most of the elements are non-zero, i.e.,
the ratio of non-zero terms is greater than a given lower bound.

Both sparse matrices and dense matrices are defined within a context where a measure
for “sparseness” and “denseness” is given. Another concept that is crucial in coding theory
is the Hamming distance.
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Definition 1.2.9. The Hamming distance is defined between vectors in Fnq as

dH(x,y) = |{i | xi 6= yi}|,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

Essentially, the Hamming distance finds the number of positions where the vectors x
and y differ. In most cases distance is used to refer to hamming distance unless otherwise
specified and we denote this by d. We will now look at an example.

Example 1.2.10. Let

x = (0, 0, 1, 1, 0), y = (1, 0, 0, 1, 0), z = (0, 1, 1, 1, 1), w = (1, 1, 1, 1, 1)

be vectors in F5
2. Then,

d(x,y) = 2 and d(z,w) = 1.

Now we will look at the Hamming weight.

Definition 1.2.11. The Hamming Weight is defined to be the number of nonzero coordinates
in a codeword c.

Example 1.2.12. For instance, if x = (1, 0, 0, 1, 0), then the Hamming weight is given by
wh(x) = 2.

It is important to recognize the relationship the hamming weight and hamming distance
have with one another. That is, dH(x,y) = wH(x− y). This relationship is important when
we talk about the minimum distance.

Definition 1.2.13. The minimum distance of C is d(C) = min{dH(x,y) | x,y ∈ C, x 6= y}.

In regards to coding theory, the minimum distance is essential in telling us about a code’s
error correction or error detection ability.

Definition 1.2.14. A code C is u−error-detecting if, whenever a codeword incurs at least
one but at most u errors, the resulting word is not a codeword. A code C is exactly u−error-
detecting if it is u−error detecting but not (u+ 1)-error-detecting.

Theorem 1.2.15. ([26]) If a code has minimum distance d then the code C can detect up
to d− 1 errors.

Definition 1.2.16. A code C is v−error-correcting if minimum distance decoding (equiva-
lently maximum likelihood decoding) is able to correct v or fewer errors.
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Theorem 1.2.17. ([26]) If a code has minimum distance d then the code can correct up to
bd−1

2
c errors.

Next, we go over the concept of a hash function.

Definition 1.2.18. A hash function is an algorithm that maps data sets of arbitrary length
to smaller data sets of fixed length.

An ideal hash function guarantees that computing the hash value is easy for any input
and the following are almost impossible

• to find a message that maps to a given hash value

• to find two different messages to the same hash value

• to modify a message without changing its hash value [23].

Definition 1.2.19. Let x = (x1, · · · , xn) ∈ Fnqm . The support E of x, denoted by Supp(x)
is defined to be the Fq subspace of Fnq generated by the coordinates of x.

It is customary to denote a linear code over Fnq , by [n, k, d]q, where n is the length of the
code, k is the dimension, and d is the minimum distance.

We typically send or encode a message by mG where m is the original message that was
sent and G is the generator matrix. The result is a vector of length of n. So if we start with
k bits of information this becomes n bits. So the information rate r = k

n
.

Definition 1.2.20. The plaintext is the the plain message m before encryption and the
ciphertext is the message after encryption.

Example 1.2.21. Let C be a [5, 3] linear code with generator matrix

G =

1 0 1 1 0
0 1 0 1 1
0 0 1 0 1

 ,

and let the message m = (1, 0, 1). Now we can encode by

mG =
(
1 0 1

)1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

 =
(
1 0 1 1 1

)
.

Notice that mG is just the sum of the first and third rows of G. Note that we needed 5
bits to transmit a 3-bit message. So, the information rate is given by r = 3

5
. In general, if C

is an [n, k]-code over a binary field, the information rate is given by k
n
.
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As mentioned above one of the three main components of coding theory is recovering
the original message that was sent. Recovering the original message m from a codeword c
means to find the coordinate vector of c in the basis that consists of the rows of G.

1.2.1 Syndrome Decoding

We now consider syndrome decoding, which is the default method used in decoding linear
codes in the absence of any other decoding algorithm. The idea of syndrome decoding is
based on cosets, syndromes, and the maximum likelihood principle. We let C be a linear
code over Fnq and let u ∈ Fnq .

Definition 1.2.22. A coset is the set C + u = {c+ u : c ∈ C}.
We call the word of least Hamming weight the coset leader. Let us do an example.

Example 1.2.23. Let C = {(0, 0, 0, 0), (1, 0, 1, 1), (0, 1, 0, 1), (1, 1, 1, 0)} then, we have the
following cosets:

(0, 0, 0, 0) + C : {(0, 0, 0, 0), (1, 0, 1, 1), (0, 1, 0, 1), (1, 1, 1, 0)}

(0, 0, 0, 1) + C : {(0, 0, 0, 1), (1, 0, 1, 0), (0, 1, 0, 0), (1, 1, 1, 1)}

(0, 0, 1, 0) + C : {(0, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 1), (1, 1, 0, 0)}

(1, 0, 0, 0) + C : {(1, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 1), (0, 1, 1, 0)}

The cosets leaders are all the words in the first position of each row.

Definition 1.2.24. For any w ∈ Fnq and c ∈ C where C is a linear code the syndrome of w
where w = c+ e is S(w) = HwT where H is the parity check matrix for the linear code C.

We know that by definition for c ∈ C, HcT = 0. So when we calculate the syndrome of
w we have that

S(w) = HwT = H(c+ e)T = HcT +HeT = 0 +HeT = S(e).

So we have that S(e) = S(w) must be in the same coset. The decoding procedure is as
follows:

1. First calculate S(w) where w is the received work.

2. Next find the coset leader u where S(u) = S(w).

3. Decode w as v = w− u
This method works because we know that cosets partition the whole set. So we have spheres
of r = bd−1

2
c centered at codewords of C. So as long as w(e) ≤ bd−1

2
c, then w will belong to

only one sphere.
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1.3 Special Types of Codes

There are many families of codes in coding theory. A few of these are Hamming codes,
Golay codes, cyclic codes, BCH codes, quadratic residue codes, quasi-cyclic (QC) codes,
quasi-twisted (QT) codes, Reed-Solomon codes, Goppa codes, and LDPC codes. We will
now go more in depth into certain types of codes that are relevant for the thesis.

1.3.1 Hamming Codes

Hamming codes were first discovered by R.W Hamming and M.J.E Golay in 1950. They are
a type of linear error correcting codes. Hamming codes are known to be easy to encode and
decode and thus are used in many different applications and examples. We will look more
specifically at binary Hamming codes [26].

Definition 1.3.1. Let r ≥ 2. A Binary Hamming code is a binary linear code of length
2r − 1 where the columns of the parity check matrix H consist of all nonzero vectors of set
Fr2. We often denote this Ham(r, 2).

Proposition 1.3.2. ([26]) The following are true of Hamming Codes:

• The dimension of Ham(r, 2) is k = 2r − 1− r.

• The distance of Ham(r, 2) is d = 3. That is, binary hamming codes are single error
correcting.

Now we will talk about the process of decoding Hamming Codes.

Decoding Hamming Codes

Let y be the received word. We first calculate the syndrome S(y) = HyT . If S(y) = 0, then
y is the codeword sent and we are done. Otherwise S(y) will be a binary r−tuple, which
corresponds to a column j in the parity check matrix H based on how it was constructed.
Thus, the error occurs in position j, so our word sent is y − ej ([26]). Let us illustrate this
on an example.

Example 1.3.3. Let us look at the [7, 4] binary Hamming code with parity check matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


Now we let
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m = (0, 1, 1, 0, 0, 1, 1) and y = (0, 1, 1, 0, 1, 1, 1)

We calculate the syndrome, HyT = (1, 0, 1). This corresponds to the 5th entry in H. So our
error occurs in the 5th position. That is, e5 = (0, 0, 0, 0, 1, 0, 0).Now we can calculate

y − e5 = (0, 1, 1, 0, 1, 1, 1)− (0, 0, 0, 0, 1, 0, 0) = (0, 1, 1, 0, 0, 1, 1) = m.

1.3.2 Cyclic Codes

Definition 1.3.4. A subset S of Fnq is cyclic if (an−1, a1, a2, . . . , an−2) ∈ S
whenever (a0, a1, a2, . . . , an−1) ∈ S. A linear code is called a cyclic code if C is a cyclic
set. The word (un−r, . . . , un−1, u0, u1, . . . , un−r−1) is said to be obtained from the word
(u0, u1, . . . , un−1) by cyclically shifting r positions.

We define π to be the linear map from Fnq −→ Fq[x]/(xn−1). That is π(a0, a1, . . . , an−1) =
a0 + a1x+ · · ·+ an−1x

n−1. So, we can describe any cyclic code in this algebraic nature. This
will be key when talking about generator polynomials.

Theorem 1.3.5. ([26]) Let π be the linear map defined above. Then a nonempty subset C
is a cyclic code if and only if π(C) is an ideal of Fq[x]/(xn − 1).

Theorem 1.3.6. ([26]) Let I be a nonzero ideal in Fq[x]/(xn− 1) and let g(x) be a nonzero
monic polynomial in I of minimal degree. Then g(x) is a generator of I and divides xn− 1.

Definition 1.3.7. The unique monic polynomial of least degree of a nonzero ideal I of
Fq[x]/(xn − 1) is called the generator polynomial of I. For a cyclic code C, the generator
polynomial of π(C) is also called the generator polynomial of C.

1.3.3 Quasi-Cyclic Codes

Definition 1.3.8. An n× n circulant matrix C for c = (c0, c1, . . . , cn) is of the form

C =



c0 c1 · · · cn−1 cn
cn c0 c1 · · · cn−1
cn−1 cn c0 · · · cn−2

...
c2 · · · · · · c1
c1 c2 · · · cn c0


Definition 1.3.9. A block circulant matrix is a matrix that is composed of circulant square
blocks of identical size. The size of each of the circulant blocks is called the order r and the
index l is the number of circulant blocks in a row.
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Definition 1.3.10. A linear code C over Fq is quasi cyclic of index l if
(cn−l, cn−l+1, . . . , c0, c1, . . . , cn−l−1) ∈ C whenever (c0, c1, . . . , cn−1) ∈ C. We refer to these as
(l, k0) QC codes, where l is the index, lr is the length, and has dimension k = k0r.

Definition 1.3.11. A generator matrix of the quasi cyclic code of index l and order r is of
the form

G =


G1,1 G1,2 · · · G1,l−1 G1,l

G2,1 G2,2 G2,3 · · ·
. G3,2 G3,3
...

Gr,1 Gr,2 · · · Gr,l−1 Gr,l


where each of Gi,j is a circulant matrix.

1.3.4 QC-MDPC Codes

Definition 1.3.12. A Moderate Density Parity Check Code is a binary linear code which
has a sparse parity check matrix.

Definition 1.3.13. A (l, k0, r, w)-QC-MDPC code is an (l, k0) quasi-cyclic code of length
n = lr, dimension k = k0r, order r and has a parity check matrix of constant row weight
w = O(

√
n).

The parity check matrix of such a code is not exactly sparse, however it still has a
bound on the number of zeros, thus the term “moderate-density” is used for these type of
codes. QC-MDPC codes have been used extensively in some of the most recent successful
implementations of code-based cryptographic schemes.

1.3.5 Ideal Codes

Ideal codes are analogous to cyclic codes. Essentially, Ideal codes are codes that have a
systematic generator matrix that are composed of blocks of ideal matrices. First we will give
some motivating definitions before we define the code.

Definition 1.3.14. Let P ∈ Fq[X] be a polynomial of degree n and v be a vector of Fnqm .
We define the ideal matrix generated by v to be a square matrix of size n× n of the form,

IM(v) =


v

Xv mod P
...

Xn−1v mod P
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The square matrix is denoted by IM(v).

Definition 1.3.15. Let P (X) ∈ Fq[X] be a polynomial of degree n. An [ns, nt]qm code C is
an (s, t)-ideal code if its generator matrix in systematic form is, G = [Itn|A] where

A =

IM(g1,1) · · · IM(g1,s−t)
...

IM(gt,1) · · · IM(gt,s−t)


where (gi,j) are vectors of Fnqm where 1 ≤ i ≤ s−t and 1 ≤ j ≤ t . We say that C is generated
by the (gi,j).

Notice that ideal codes are essentially just a generalization of Quasi Cyclic codes. Quasi
Cyclic codes and Ideal codes have generator matrices of the same form. The only difference is
that the blocks of a generator matrix of quasi cyclic codes are made up of circulant matrices
as opposed to Ideal matrices.

Ideal codes are often shortly called to be s−ideal codes. So C is an [sn, n] ideal code
that is generated by (g1, ..., gs−1). That is, C = {(u, ug1, ..., ugs−1)}

1.3.6 Gabidulin Codes

Now we will talk about Gabidulin Codes. Before we do so, we need one motivating definition
of q− polynomials.

Definition 1.3.16. The set of q−polynomials over Fqm is the set of the polynomials such
that,

{P (X) =
∑r

i=0 piX
qi , with pi ∈ Fqm and pr 6= 0}.

Now we can define the Gabidulin codes. Essentially, we are going to think of these codes as
evaluating q−polynomials over a given vector.

Definition 1.3.17. Let k, n,m ∈ N such that k ≤ n ≤ m and g = (g1, ..., gn) be a Fq
linearly independent family of elements of Fqm . Gg is

{P (g), degqP ≤ k}
Note that P (g) = (P (g1, · · · , P (gv)).

The generator matrix for the Gabiludin codes is given by

G =


g1 · · · gn
gq1 · · · gqn
...

. . .
...

gq
k−1

1 · · · gq
k−1

n

 .
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1.3.7 BCH codes

BCH codes, named after Bose, Chaudhuri, and Hocquerghem, were first discovered in 1959-
1960. They are essentially a special type of cyclic codes. They can also be viewed as
a generalization of Hamming codes for multiple error correction. We will provide some
defintions about finite fields to help motivate the definition for BCH codes [26].

Definition 1.3.18. An element α in a finite field Fq is called a primitive element of Fq if
Fq = {0, α, α2, . . . , αq−1}.

Definition 1.3.19. The order of a nonzero element α ∈ Fq denoted by ord(α) is the smallest
positive integer k such that αk = 1.

Definition 1.3.20. A minimal polynomial of α ∈ Fqm with respect to Fq is a nonzero monic
polynomial f(x) of the least degree in Fq[x] such that f(α) = 0.

Definition 1.3.21. The lcm(f1(x), f2(x)) of two nonzero polynomials f1(x), f2(x) ∈ Fq[x]
is defined to be the monic polynomial of lowest degree which is both a multiple of f1(x) and
f2(x). So, in general the lcm(f1(x), f2(x), · · · , fk(x)) is said to be the monic polynomial of
lowest degree which is a multiple of each of f1(x), f2(x), ..., fk(x).

Definition 1.3.22. Let α be a primitive element of Fqm and let M i(x) be the minimal
polynomial of αi with respect to Fq. A (primitive) BCH code of length n = qm − 1 with
distance δ is a q−ary cyclic code generated by g(x) : lcm(Ma(x),Ma+1(x), ...,Ma+δ−2(x))
for some integer a.

The parameters of a binary BCH code are of the following: Block length n = 2m − 1,
minimum distance dmin ≥ 2t+ 1 where t ≤ 2m−1 and m ≥ 3. We call it a t−error-correcting
BCH code [21].

Decoding BCH codes

Now we will discuss one of the methods for decoding BCH codes that will be used in this
thesis. Let w be our received vector. Recall that w = c+ e where c is a codeword and e is
the error vector. Let w(x) = w0 + w1x + w2x

2 + ... + wn−1x
n−1 be the received vector and

let e(x) be the error vector. Also, let c(x) = c0 + c1x + ...cn−1x
n−1. Then the syndrome of

w(x) is (S0, S1, · · · , S2t) := (w0, w1, · · · , wn−1)HT . So

Si = w(αi) = w0 + w1α
i + w2α

2i + ...+ wn−1α
(n−1)i

12



where αi is a root of the respective polynomial M i(x). So Si = w(αi) = e(αi).
Then if we assume that the errors take place at positions i0, i1, ..., il−1 with l ≤ t, then

e(x) = xi0 + xi1 + · · ·+ xil−1 . So now we have the following system of equations,

S0 = αi0 + αi1 + ...+ αil−1 = w(α)

S1 = (αi0)2 + (αi1)2 + ....+ (αil−1)2 = w(α2)

.

.

.

S2t = (αi0)2t + (αi1)2t + ...+ (αil−1)2t = w(α2t)

Now any method that will solve the system of equations is a decoding algorithm for BCH
codes. We will describe the specific algorithm used for a [15, 7, 5] BCH code as it will be
essential in this thesis. For this BCH code, it is at most 2 error correcting. So, let us assume
that our received vector w has exactly 2 errors and that its errors occur at positions i and j.
So we know Si = w(αi). Define X : αi1 and Y := αi2 . So our system of equations becomes,

X + Y = S1

X2 + Y 2 = S2

X3 + Y 3 = S3

We could keep writing the corresponding system of equations but the above is all that is
needed for the decoding process. Our goal is find our error positions and that is to essentially
find X and Y . We know that (X−z)(Y −z) = z2−(X+Y )z+XY . So if we are able to factor
the above polynomial then we will reveal what X and Y are. We know that (X + Y ) = S1.
So, now all we need to do is calculate XY . We can also say that,

S3
1 = (X + Y )3 = (X2 + Y 2)(X + Y ) = X3 + Y 3 +XY (X + Y ) = S3 +XY S1.

Solving the above for XY we get, XY = S2
1 − S3

S1
= S2− S3

S1
. So, once we calculate XY , then

we can substitute into the above polynomial and factor to find X and Y . This decoding
process will be essential later in the thesis [34].

1.3.8 Reed Solomon Codes

Reed Solomon codes are just a special class of BCH codes. These codes will be crucial in
defining Goppa codes.

13



Definition 1.3.23. Let α be a primitive element of Fq. A Reed Solomon Code (RS) over Fq
is a BCH code over Fq of length q − 1 generated by

g(x) = (x− αa)(x− αa+1) · · · (x− αa+δ−2)

with a ≥ 1 and q − 1 ≥ δ ≥ 2.

Theorem 1.3.24. ([26]) A Reed Solomon code has parameters [q − 1, q − δ, δ].

A narrow sense RS code is a RS code where a = 1.

Theorem 1.3.25. ([26]) Let α be a primitive element of the finite field Fq and let q − 1 ≥
δ ≥ 2. The narrow-sense q−ary RS code with generator polynomial.

g(x) = (x− α)(x− α2) · · · (x− αδ−1)

is equal to,

{(f(1), f(α), f(α2), . . . , f(αq−2)) : f(x) ∈ Fq[x] and deg(f(x)) < q − δ}.

Corollary 1.3.26. ([26]) Let α be a primitive element of Fq and let q − 1 ≥ δ ≥ 2. The
following is a generator matrix for a RS code generated by g(x) = (x−α)(x−α2) · · · (x−αδ−1)


1 1 1 · · · 1
1 α α2 · · · αq−2

1 α2 α4 · · · α2(q−2)

...
...

...
...

...
1 αq−δ−1 α2(q−δ−1) · · · α(q−δ−1)(q−2)

 .

We let F∗ = F\{0}.

Definition 1.3.27. Let n ≤ q. Let α = (α1, α2, · · · , αn) where (1 ≤ i ≤ n), αi are distinct
elements of Fq and let v = (v1, v2, · · · , vn) where vi ∈ F∗q for i ∈ [1, n]. For k ≤ n, the
generalized Reed-Solomon code GRSk(α,v) is,

{(v1f(α1), v2f(α2), · · · , vnf(αn) : f(x) ∈ Fq[x] and deg(f(x)) < k}.

Theorem 1.3.28. ([26]) The parameters of a GRSk(α,v) are [n, k, n− k + 1].

A special class of GRS codes is the alternat codes, which are defined as follows:

Definition 1.3.29. An alternant code Ak(α,v′) over the finite field Fq is the sub field
subcode GRSk(α,αv) |Fq .

14



1.3.9 Goppa Codes

Goppa codes are one of the most important families of codes because of their use in cryp-
tosystems such as the McEliece Cryptosystem which we will describe later. Goppa codes are
a special subcategory of alternant codes.

Definition 1.3.30. Let g(z) be a polynomial in Fqm [z] for some fixed m and let L =
{α1, · · · , αn} be a subset of Fmq where L ∩ {zeroes of g(z)} = ∅. For c = (c1, · · · , cn) ∈ Fnq
we let

Rc(z) =
∑n

i−1
ci

z−αi
.

The Goppa code is defined by T (L, g) = {c ∈ Fnq : Rc(z) ≡ 0 mod P}.

The polynomial g(z) is called the Goppa polynomial.

Proposition 1.3.31. ([26]) The parity check matrix for a Goppa code T (L, g) = {c ∈ Fnq :
HcT = 0} with Goppa polynomial g(z) of degree t is given by

H =


g(α1)

−1 · · · g(αn)−1

α1g(α1)
−1 · · · αng(αn)−1

... · · · ...
αt−11 g(α1)

−1 · · · αt−1n g(αn)−1

 .

1.3.10 Rank Metric Codes

Most codes are constructed over the Hamming metric as described above. But not all codes
are. Below we will describe a new metric (the rank metric) and discuss some codes that are
based on the rank metric. First we will define the rank metric of a code.

Definition 1.3.32. Let q be a power of a prime p, m an integer, and let Vn be a n di-
mensional vector space over the finite field Fqm . Let B = (β1, · · · , βm) be a basis of Fqm .
We view this basis as a basis for the m-dimensional vector space over Fq. By definition of
basis, each coordinate xi =

∑m
i=1 xijβi. Let Fi(x) be the map from Fqm to Fq where Fi(x) is

the i−th coordinate of x in the basis B. The m × n matrix associated to x is M(x) where
M(x) = (xi,j) = where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Now, the rank weight ||x|| of x is defined
as

||x|| = Rank(M(x)).
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Definition 1.3.33. A rank code C of length n and dimension k over Fqm is a subspace of
dimension k of Fqm embedded with the rank metric.

Definition 1.3.34. Let x = (x1, ..., xn) ∈ Fnqm . The support E of x is denoted by Supp(x)
is the Fq subspace of Fmq generated by the coordinates of x.

From the above definition of rank we can say that dimE = ||x||.

1.3.11 Low Rank Parity Check Codes

A type of code that is based on the Rank Metric is the class of Low Rank Parity Check
Codes. We give the following definition below.

Definition 1.3.35. A Low Rank Parity Check (LRPC) code of rank d, length n and dimen-
sion k over Fqm is a code such that the parity check matrix for the code is a (n − k) × n
matrix H(hij) such that the sub-vector space of Fqm generated by its coefficients hij has
dimension at most d. Denoting F the sub-vector space of Fqm generated by its coefficients
hij of H we denote {F1,F2, · · · ,Fd} as one of its basis.

1.4 Code Based Cryptography

Cryptography is the study of finding various methods and techniques in order to keep our
information secure when it is transmitted. The basic model for cryptography can be sum-
marized in the following figure:

Encryption
Key

Decryption
Key

Encryption Decryption
Plaintext Ciphertext Original

Plaintext

Figure 1.1: Basic public-key encryption system model.

Quantum computers have been known to solve many of the public key cryptosystems
that are working today. More precisely, efficient quantum algorthms have been developed
to solve problems such as the discrete logarithm problem, integer factorization problem,
which are essential in the security of many known cryptosystems such as the RSA, the
Elliptic Curve Cryptographu, etc. However, to date, no efficient algorithm has been found
for the decoding problem of a random code, which has made cryptosystems that depend on
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the hardness of decoding random codes potentially resistant to quantum computers. Such
cryptosystems are generically known as code based cryptosystems. As mentioned before,
code cryptosystems rely on the hardness of decoding random linear codes, which has been
shown to be an NP-hard problem.

Figure 1.2 is an illustration that gives an overview of the use of code-based cryptography,
where the encoded codeword from the original message is intentionally modified before up
to t bit errors. The decryption is easy since the receiver knows the secret code (decrypt) the
message, while, for anyone else, inferring the message from the transmitted codeword is an
NP-Complete problem.

Encoding Add Error

Decoding

Plaintext Codeword

Ciphertext
Original
Message

Figure 1.2: Code-based cryptography model in a nutshell.

In the next few sections we will discuss one of the most well known and first code based
cryptosystems that was based on the algebraic capability of error correcting codes, namely
the McEliece Cryposystem as well as some of the variations of the McEliece cryptosystem.

1.4.1 The Classical McEliece Cryptosystems

The McEliece cryptosystem is one of two major public key cryptosystems along with RSA
that came up around the same time. The cryptosystem was introduced in 1978 [31]. The
McEliece Cryposystem was not accepted and used in security implementations due to its
large key size even though it has faster encryption and decryption rates then most public
key systems. However, recently it has started to generate more interest along with other
code-based cryptosystems due to the emerging threat of quantum computers. The scheme is
based on error correcting codes, in particular on Goppa codes, and relies on the difficulty of
decoding a random error message in linear codes. In contrast most public key systems are
based on the difficulty of certain computation problems such as integer factorization problem
(in RSA) and the discrete logarithm problem (in elliptic curve cryptography) [31]. But both
of these problems are known to be solved quite efficiently by quantum computers since their
introduction.

Now we will describe the structure of the original scheme. The McEliece cryptosystem is
typically based on Goppa codes, which are an algebraically defined family of error correcting
codes. Goppa codes have a well known decoding algorithm due to Patterson [30]. Let C be
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a binary t-error correcting Goppa code of length n and dimension k. G is a k × n generator
matrix for C. G is constructed via a randomly chosen irreducible polynomial of degree t
over GF (2t). S is a k × k random, non singular, dense scrambler matrix, and P is an n× n
permutation matrix. The matrix G′ = SGP is made public while S,G, and P are secret
[31]. Below is the structure of the McEliece cryptosystem:

Key Generation

1. Public Key: G′ and t

2. Private Key: G,S, P

3. Plaintext: m ∈ Fk2, the set of all k-bit vectors

Encryption

1. Encrypt the plain text m into c = mG′+ e, where e ∈ Fn2 is a randomly chosen vector
where wH(e) ≤ t.

Decryption

1. Compute c′ = cP−1 = (mS)G+ eP−1.

2. Decode c′ with the fast decoding algorithm for C to obtain m′.

3. Recover m = m′S−1.

We will now give an example of how the McEliece cryptosystem works. Note that even
though Goppa codes are used in the original McEliece Cryposystem, we can use other codes
as well to demonstrate how the scheme works, which is what we will be doing. (The Goppa
code used in the original scheme had a 512× 1024 generator matrix.)

Example 1.4.1. Consider the code C to be a binary [7, 4]-Hamming Code. Let

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 ,

S =


1 1 0 1
1 0 0 1
0 1 1 1
1 1 0 0

 ,
18



P =



0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0


Then our public matrix is as follows

G′ = SGP =


1 1 1 1 0 0 0
1 1 0 0 1 0 0
1 0 0 1 1 0 1
0 1 0 1 1 1 0


We can see that G′ is an equivalent code to G. Let

m = (1, 1, 0, 1) and e = (0, 0, 0, 0, 1, 0, 0)

Then

c = mG′ + e = (0, 1, 1, 0, 0, 1, 0) + (0, 0, 0, 1, 0, 0) = (0, 1, 1, 0, 1, 1, 0)

Now, we calculate c′.

c′ =
(
0, 1, 1, 0, 1, 1, 0

)


0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 0


=
(
1, 0, 0, 0, 1, 1, 1

)

Now we apply the efficient decoding algorithm for Hamming codes to c′ to find out the error
position happens in position 7. So m′ = (1, 0, 0, 0, 1, 1, 0). Now we multiply by S−1 to get
back m.

1.4.2 Variations on McEliece

After its inception, many variations of the McEliece Cryptosystem were introduced. One
such variation of the McEliece cryptosystem was introduced in 1986 by Niederreiter and is
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referred to as the Niederreiter cryptosystem [23]. There are few changes that are made such
as the public key scrambles the parity check matrix as opposed to the generator matrix.
The reasoning behind this is because the cryptosystem uses the syndrome as the ciphertext
instead of the actual codeword [23]. This results in more work being done in the encryption
phase rather than the decryption phase. Some of the advantages of this cryptosystem are
the smaller key size and a faster implementation than McEliece [25].

The scheme can be described as follows: Let C be a [n, k, d]-Goppa code capable of
correcting up to t errors. H is an (n − k) × n parity check matrix. S is the k × k random
dense scrambler matrix and P is the n × n permutation matrix. The matrix H ′ = SHP is
made public. We also calculate the inverses of S and P . Then, H,S−1, P−1 are made secret
[23]. Below is the structure of the Niederreiter cryptosystem which is very similar to the
original McEliece:

Key Generation

1. Public Key: H ′ = SHP and t

2. Private Key: H,S−1, P−1

3. Plaintext: m ∈ Fk2, the set of all k-bit vectors

Encryption

1. First we let the message the m be denoted as a binary string e of length n and weight
t.

2. Encrypt the plain text m into c = H ′eT .

Decryption

1. Compute c′ = S−1c

2. Decode e′ from c′ with the fast decoding algorithm for C to obtain m′.

3. Compute e = P−1e′.

4. Represent e as a message m.
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1.4.3 Another Method for Public Key Encryption

There is another proposed model for public key encryption that has recently been proposed.
More precisely it is called a KEM (Key Encapsulation Mechanism). This is not a cryp-
tosystem, but rather a model that is used in many recent cryptosystems. We will describe
some of the cryptosystems with this model in chapter 4, when we talk about the code-based
schemes that are in the semi-final stage of the NIST competition. Briefly, KEM consists of
the following algorithms:

• Key Generation: takes as an input security parameters 1λ and outputs the private
encapsulation key sk and public encapsulation key pk.

• Encapsulation (Encap): The encapsulation algorithm takes as an input a public key
pk and outputs an encapsulated key K and a ciphertext (K,C).

• Decapsulation (Decap): The decapsulation algorithm takes as an input the ciphertext
C and the decapsulation key sk. The output is a key K encapsulated in C or a
decapsulation failure symbol ⊥ [5].
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Chapter 2

Summary of Scrambling Processes in
the Literature

In this chapter we will summarize some of the resent cryptosystems that have modified the
scrambling process from the ones used in the McEliece Cryptosystem and its early variants.

2.1 Baldi’s Twist

This cryptosystem is another variation of the McEliece cryptosystem and was introduced in
2016 by Baldi et al. in [10]. The main idea with this scrambling method is to replace the
permutation matrix P with a denser transformation matrix Q as described in the McEliece
cryptosystem. One of the advantages of doing this is if the permutation matrix is replaced
with a denser transformation matrix than the the public key is no longer permutation equiv-
alent to our message m. As a result, this provides enhanced security of the public key.
The transformation matrix Q is constructed in a way that ensures that the density of the
public code is increased so that it is extremely difficult for an attacker to look for low weight
codewords in the dual code, which is a common type of attack on the McEliece Cryptosys-
tem. Also, the transformation matrix is constructed in a way that still limits the number of
intentional errors.

We will now describe how this transformation matrix is constructed. The transformation
matrix Q is a non singular n × n matrix and is of the form Q = R + T where R is a dense
matrix and T is a sparse matrix. Now we will describe the construction of R and T . First R
is made by starting with two sets A and B. Each set consists of w matrices with size z × n
where z ≤ n. That is, A = {a1, a2, ...aw} and b = {b1, b2, ..., bw} where a =

∑w
i=1 ai. Each of

the w matrices are randomly chosen and then we define R as follows:
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R =



a1
a2
a3
.
.
.
aw



T 

b1
b2
b3
.
.
.
bw


T is constructed in the following way. Define T to be a n × n non-singular sparse matrix
with elements in Q and average row and weight equal to m < n. If m is an integer, then
T is simply the sum of m generalized permutation matrices. But if m is rational, we make
sure that the rows are columns of T are equal to bmc or dme [10]. Below is the outline of
the basic structure of this new modified McEliece cryptosystem.

Key Generation

1. Public Key: G′ and t where G′ = S−1GQ−1

2. Private Key: G,S,Q

3. Plaintext: m ∈ Fk2, the set of all k-bit vectors

Encryption

1. Encrypt the plain text m into c = mG′+ e, where e ∈ Fn2 is a randomly chosen vector
where wH(e) ≤ t.

Decryption

1. Compute c′ = cQ = mS−1 + e ·Q

2. Decode c′ with the fast decoding algorithm for C to obtain m′.

3. Recover m′ = mS−1.

There is also a Niederreiter version of this proposed cryptosystem.
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2.2 QC-MDPC

Another variation is to use Quasi Cyclic Mid Density Parity Check (QC-MDPC) codes with
the McEliece framework as proposed by Nicolas Sendrier. Sendrier proposed using Quasi
Cyclic codes with the McEliece framework. As mentioned earlier, the generator matrix for
QC-MDPC codes are composed of circulant blocks [32]. Because G is in systematic form as
well as composed of circulant blocks, this leads to a smaller key size and an easier encryption.
The parameters of this cryptosystem are n, k, w, t. Now we will describe the key generation
where n = 2p and k = p.

Key Generation

First, pick a sparse vector (h0, h1) ∈ {0, 1}p × {0, 1}p of weight w. The secret key H is
obtained by taking cyclic shifts of the first row as seen below.

where h0(x) is invertible in F2[x]/(xp − 1).
Then we make known h(x) = h1(x)h−10 (x)mod(xp − 1) or g(x) = h(x)\x
Then the parity check matrix is H is a circular matrix constructed via sparse vectors h0

and h1 of a given weight and G is the generator matrix as seen below.

Encryption

Encryption is done as follows
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F2[x]/(xp − 1)→ F2[x]/(xp − 1)× F2[x]/(xp − 1)
m(x)→ (m(x)g(x) + e0(x),m(x) + e1(x)).

The error e(x) = (e0(x), e1(x) has weight t.

Decryption

Decryption only requires the sparse parity check matrix [32]. Iterative decoding is done like
that of Low Density Parity Check Codes.

Essentially the McEliece framework is used with Hsecret. That is, define G and H as
above. The cryptosystem is more secure as long as two conditions hold. The first condition
is the pseudorandomness of the public code and the second condition is the hardness of
decoding QC codes [32]. This cryptosystem is generating a considerable interest due to its
very little structure.

2.3 A New Direction in Scrambling

Aguilar-Melchor et al. introduced a new direction in scrambling in code-based cryptography
in [1]. In the past, typically scrambling has only been done on the generator matrix or its
variations. In this cryptosystem the scrambling is done on the ciphertext. The cryptosystem
they are proposing is based on two different types of codes. The first code is a linear code
C with parameters n and k. For this code C an efficient decoding algorithm is known.
Examples of these would be Hamming codes, Goppa codes, BCH codes, etc. The code
C will be publicly known along with its generator matrix G. The second code used in
the cryptosystem is a random double circulant code. Aguilar-Melchor et al. also give the
following definition that is essential in the design of the cryptosystem [1].

Definition 2.3.1. Let x = (x1, ..., xn) ∈ Fn. The circulant matrix for a vector x is defined
as follows,

rot(x) =


x1 xn ... x2
x2 x1 ... x3
. . . . . .
. . . . . .
. . . . . .
xn xn−1 . . . x1
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Then for the second code in the cryptosystem, the generator matrix is of the form H =
(In | rot(h)). Also, for this cryptosystem the following operation is defined.

x · y = x× rot(y)T = (rot(x)× yT )T = y × rot(x)T = y · x.

As we can see in the above, the operation is commutative. It turns out that associativity
of this operation plays an important role in the implementation of the cryptosystem. The
proof of this was not given in the paper. So we give the proof of this property:

Theorem 2.3.2. This operation x · y = x× rot(y)T is associative.

Proof. Let

x =
(
x1, x2, x3, · · · , xn

)
,y =

(
y1, y2, y3, . . . , yn

)
and z =

(
z1, z2, z3, . . . , zn

)
.

Then

rot(y) =


y1 yn . . . y2
y2 y1 . . . y3
. . . . . .
. . . . . .
. . . . . .
yn yn−1 . . . y1

 and rot(z) =


z1 zn . . . z2
z2 z1 . . . z3
. . . . . .
. . . . . .
. . . . . .
zn zn−1 ... z1

 .

Notice that rot(y)T × rot(z)T = rot(z)T × rot(y)T due to its circulant nature. Then, we
have

(x·y)·z = (x×rot(y)T )×rot(z)T = (x×rot(z)T )×rot(y)T = (x×rot(z)T )·y = (x·z)·y.

�

Now, we will describe the encryption and decryption process. Our first code C is a
decodable [n, k] code that can correct up to δ errors and a random double-circulant [2n, n]
code. The global parameters are (n, k, w, wr, we).

Key Generation

1. Let h ∈ R and a generator matrix G of C.

2. The secret key is (x,y) ∈ R2 where wx = wy = w.

3. The private key is (h, s) where s = x+ h · y and h is sampled from R.
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Encryption

1. Let e ∈ R, r = (r1, r2) ∈ R2 where w(e) = we and w(r1) = w(r2) = wr.

2. Let u = r1 + h · r2 and v = mG+ s · r2 + e.

3. The ciphertext then is (u,v).

Decryption

1. Decode v− u · y by a special decoding algorithm.

The decoding alogrithm C.decode only decodes correctly whenever

w(s · r2 − u · y + e) = w((x+ h · y)r2 − (r1 + h · r2)y + e = w(x · r2 − r1 · y + e) ≤ δ.

So, instead of our error vector just being e, the added error is e′ = x · r2 − rs · y + e. In
this cryptosystem the first thing we notice is that our generator matrix G is known. So,
the security and the ability to decrypt is not reliant on knowing C. The purpose of the
random circualant code is to just generate noise. The security relies on the random circulant
code being able to hide the structure of the code [1], while the ability to decrypt correctly
is guaranteed by the linear code C.

We will now do an example of this cryptosystem with a BCH code.

Example 2.3.3. Let n = 15. This is a binary BCH [15, 7, 5]-code. Let α be a primitive
root of F16 such that α is a root of x4 + x + 1. The generator polynomial for the 2-error
correcting BCH code is (x4 + x + 1)(x4 + x3 + x2 + x + 1). We have that the parity check
matrix for this code is given by

H =



1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
0 0 1 0 1 0 0 1 0 1 0 0 1 0 1
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1
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and a generator matrix given by

G =



1 0 0 0 0 0 0 1 0 0 0 1 0 1 1
0 1 0 0 0 0 0 1 1 0 0 1 1 1 0
0 0 1 0 0 0 0 0 1 1 0 0 1 1 1
0 0 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1


This is a 2-error correcting code. We will show that this in fact true. Let our message
m = (0, 1, 0, 0, 1, 1, 1). Then we have mG = (0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1). We will let

x = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1) and y = (0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0).

Notice w(x) = w(y) = 5. Now we let

h = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1).

Notice that w(h) = 7. We calculate h · y to get,

h · y = (1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0).

Then

s = x+ h · y = (0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1)

So the secret key sk = (x,y) and the private key pk = (h, s). Now we let

r1 = (0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1) and r2 = (1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1)

Also, we choose the error to be

e = (1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0)

Next we calculate u and v where u = r1 + h · r2 and v = mG + s · r2 + e and get the
following,

u = (1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1) and v = (1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1)

Then the ciphertext is c = (u,v). Now when we will decode v − u · y which is

v − u · y = (0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1).
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i αi

0 1
1 α
2 α2

3 α3

4 α + 1
5 α2 + α
6 α3 + α2

7 α3 + α + 1

i αi

8 α2 + 1
9 α3 + α
10 α2 + α + 1
11 α3 + α2 + α
12 α3 + α2 + α + 1
13 α3 + α2 + 1
14 α3 + 1

Table 2.1: Values of αi.

We will follow the algorithm for decoding the BCH code as described above. We will
look at v − u · y which corresponds to the polynomial

w(x) = x+ x4 + x6 + x7 + x9 + x10 + x11 + x13 + x14.

We calculate the syndromes and get the following,

S1 = w(α) = α + α4 + α6 + α7 + α9 + α10 + α11 + α13 + α14 = 1

S2 = w(α2) = α2 + α8 + α12 + α18 + α20 + α22 + α26 + α28 = 1

S3 = w(α3) = α3 + α12 + α18 + α21 + α27 + α30 + α33 + α39 + α42 = 0

Now we calculate XY = S2− S1

S3
= 1. The polynomial we are then factoring for is z2 + z+ 1.

The zeroes of this polynomial are α5 and α10. So the received word has errors in position 5
and position 10, which it does. So the code is 2-error correcting. Thus, decoding was done
correctly.

The structure this cryptosystem follows was the motivation for what we attempted to do
in our research. In the next chapter we will describe an attempt at our proposed cryptosystem
and just like [1] the scrambling that is done is on the ciphertext.
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Chapter 3

A Framework for Future
Constructions

The scrambling process used in [1] has brought a new direction to the construction of code-
based cryptosystems. The idea that the structure of the code does not have to be hidden
and that the scrambling is done on the ciphertext is a novel idea that has many potential
advantages. The main tool that is used in this cryptosystem is an operation that sends
vectors to other vectors. This operation turns out to have many properties, which turn
out to be essential for the scheme to work properly. We believe that Linear Algebra would
provide a rich source to find many new operations for potential future schemes instead of the
x · y = x× rot(y)T operation that was used in [1]. In this chapter, we consider an attempt
of finding such an operation and we analyze why the attempt was not successful, which leads
us to build a framework for such operations that would successfully lead to construction of
new schemes that might have better properties than the ones already built.

3.1 Our Attempt

The properties that we were able to discern at the beginning were that the operation should
take two vectors u,v ∈ Fn2 and send it to another vector in Fn2 , and that it has to be
commutative.

The operation we initially proposed is the following. Define “·” from Fn2 × Fn2 → Fn2 , by

u · v = [L(u)TL(v) + L(v)TL(u)](u+ v)T .

where L(u) is a given linear transformation from Fn2 to Fn2 . Notice that our linear operation
is commutative. That is, u · v = v · u. So with the operation we thus proposed, the linear
transformation can vary, which will increase the security of the cryptosystem as it is another
added unknown. Some examples of a linear transformation we could define are the following:
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Example 3.1.1. Let u =
(
1, 0, 1, 1

)
. This is a vector in F4

2. We could let L1(u) =
(
1, 1, 0, 1

)
.

In this example, we are permuting the second and third coordinates.

Example 3.1.2. Let u = (1, 0, 1, 1). We let L2 be the transformation that permutes the
third and fourth coordinate. So, L2(u) = (1, 0, 1, 1). Notice this leaves the vector unchanged.

We were projecting this new operation to replace the operation in the cryptosystem
proposed by Aguilar-Melchor. However, while implementing our cryptosystem structure on
an example with BCH code of length n = 15, we found that our proposed operation is not
associative. This is a crucial requirement that we must have of the operation. Otherwise, the
cryptosystem will not decode properly. The reasoning for this is because as we saw above,
C.decode (i.e., the decoding algorithm for C) will decode correctly whenever

w(s · r2 − u · y + e) = w((x+ h · y)r2 − (r1 + h · r2)y + e = w(x · r2 − r1 · y + e) ≤ δ.

But, if the operation is not associative, then (h ·y) ·r2 6= (h ·r2) ·y. So the cryptosystem
will not decode properly. Thus, our attempt at defining a new operation does not work
entirely. However, we are able to build a framework for the operations that will be useful
for consrtcuting such cryptosystems, which we described in the next section.

3.1.1 Requirements of a New Operation

Our proposal was to essentially define a new operation to generalize the cryptosystem as
proposed by [1]. Based off our research we believe the operation should have the following
properties:

1. This new operation should be commutative.

2. The new operation should be associative on the vectors.

3. Some type of linear transformation should be done on the vector.

4. The operation should be generalized.

However notice that the proposed operation cannot be just a linear combination of vectors.
If the operation is a linear combination on the vectors, then the operation will not be
commutative. We believe that defining a new operation in this way will allow us to generalize
a method to scrambling the ciphertext. The purpose of defining a more general operation is
that a different linear transformation on the vector v will correspond to a different operation
and a new cryptosystem. This operation will create a more generalized cryptosystem and a
more secure one.
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3.1.2 Structure of the Cryptosystem With the “New” Operation

The cryptosystem is described in the following way, the global parameters are (n, k, w, wr, we)
and let · be our new operation described above.

Key Generation

1. Let h ∈ R, a generator matrix G of C.

2. The secret key is (x,y) ∈ R2 where wx = wy = w.

3. The private key is (h, s) where s = x+ h · y.

Encryption

1. Let e ∈ R, r = (r1, r2) ∈ R2 where w(e) = we and w(r1) = w(r2) = wr.

2. Let u = r1 + h · r2 and v = mG+ s · r2 + e.

3. The cipher text then is (u,v).

Decryption

1. Decode v− u · y by a special decoding algorithm.
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Chapter 4

Scrambling Processes for Recent
Cryptosystems

In this chapter we will be revisiting some of the code-based cryptosystems we have considered
in the previous chapters in terms of the scrambling processes they use but our emphasis will
be on the most recent variants that are part of the NIST competition for post-quantum
cryptography.

4.1 McEliece

The original McEliece Cryptosystem is very well known. The design of the cryptosystem is
described above. The scrambling that is done is on the generator matrix G. The generator
matrix G is disguised so that no one can know what it is. The public instead is given
a new matrix G′ which is constructed from multiplication by a scrambler matrix S and
a permutation matrix P . The result is a matrix G′ which is permutation equivalent to G.
Some of the advantages of the McEliece Cryptosystem are its fast encryption and decryption
rate so it has fast implementation. Another advantage of the cryptosystem is that there
is an inherent randomness in the encryption process. This increases the security of the
cryptosystem. One of the cons of the McEliece cryptosystem is that the public key size is
too large. The public key is a k×n matrix, which can be hard to store as n increases. Thus,
the cryptosystem is hard to implement in the real world. Notice that in this process the
McEliece cryptosystem produces an equivalent code because of this it may be easier for an
attacker to attack the public key and figure out the code. Another disadvantage is that the
ciphertext is much larger than the original message because of the redundancy added by the
encoding process [14].
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4.2 Baldi

The description of this cryptosystem is described above. Similar to McEliece the scrambling
is also being done on the generator matrix. But unlike McEliece the permutation matrix
is replaced with a denser transformation matrix. One of the advantages of this is that the
public key is no longer permutation equivalent to the secret code. This increases the security
of the cryptosystem. Now an attacker can no longer exploit the equivalence structure to get
the secret code [10].

4.3 QC-MDPC

We will look at the scrambling technique of the code described above. This proposed cryp-
tosystem is built on QC-MDPC codes. The scrambling is done on the private code. In [32]
the private code structure is hidden by calculating the inversion of one of the cyclic blocks
(namely h0(x)) and multiplying it by the h1(x) to get systematic form. Essentially, the
scrambling is done by attempting to normalize the matrix and putting it in systematic form.
Unscrambling can only be done if you were to know what h0 is [32].

4.4 Scrambling Techniques Used in Most Recent Variants

As mentioned earlier, quantum computers have had a huge impact on the future of cryptosys-
tems. Due to their large computing capacity as well as the presence of special algorithms
that can be implemented on them, quantum computers have the ability to solve some of
the difficult mathematical problems that have formed the basis for many information secu-
rity applications. Because of this, if quantum computers are built large enough, they will
have the ability to break many of the cryptosystems that are in place today that help keep
our data secure. Post quantum cryptography is the study of developing cryptosystems that
will be secure enough against both quantum and regular computers. The National Institute
of Standards and Technology (NIST) has published a report on the current state of post
quantum cryptography in 2016. In the same year, they decided to host a competition that
focuses on standardizing the public key cryptosystems that will be resistant to quantum com-
putation. The competition consists of three rounds. Initially, 26 algorithms were proposed.
Today, only seven have moved on to the third and final round. We will examine the main
algorithms used in each of the code-based finalists, and especially look at the scrambling
techniques they are proposing [29].
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4.4.1 HQC

HQC stands for Hamming Quasi Cyclic. This public key cryptosystem is the one proposed
by [1] that uses two different codes, a code C with an efficient decoding algorithm and a
random double circulant code. The scrambling in this cryptosystem is done on the cipher
text. They do this by defining an new operation (·). One of the key advantages of this
cryptosystem is that we are not limited by what code C can be used. So they can use
different codes in the cryptosystem that may have been difficult to hide before, but they are
known to be good for decoding. Another advantage of this cryptosystem is that it is general
and can be adapted and modified by using different codes, different operation, or even a
different metric to create a more secure cryptosystem [3].

4.4.2 Bike

Bike is a set of algorithms for key encapsulation that are based on Quasi-cyclic moderate
density parity check codes. There are three different variants of Bike. The cryptosystem is
similar to one proposed by [32]. We will look at Bike 1 [13] [6] [18] [19] [27].
In this cryptosystem, we let K : {0, 1}n → {0, 1}lK be a hash function in encryption and
decryption, where lK is the desired symmetric key length. Next we describe the resulting
cryptosystem.

Key Generation

Let λ be the target security level. We define the following parameters r and w. Let r be a
prime such that (Xr − 1)/(X − 1) ∈ F2[x] is irreducible. Let w be the weight of the rows of
parity check matrix H. So we do the following steps:

1. Generate h0,h1 ∈ R both of odd weight and |h0| = |h1| = w
2

.

2. Generate g ∈ R where g has odd weight and |g| ≈ r
2
.

3. Compute (f0,f1) = (gh1, gh0).

Encapsulation

1. Let (e0, e1) ∈ R2 so that |e0| = |e1| = t.

2. Now generate m ∈ R where m is our message.

3. Calculate the cipher text c = (c0, c1) = (mf0 + e0,mf1 + e1).

4. Finally, compute K ← K(e0, e1)
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Decapsulation

1. First we break up c as c0, c1 and calculate the syndrome s = (c0h0 + c1h1).

2. We decode s to recover the error vector e′0, e
′
1.

3. If (e′0, e
′
1) 6= t then the decoding has failed and we output the failure symbol.

4. Otherwise compute K = K(e′0, e
′
1).

Now we will look the variant Bike 2. For this variation, instead of following the McEliece
Framework, we are going to follow the same structure but with the Niederrieter framework.
Now we describe the cryptosystem.

Key Generation

Let λ be the target security level. We define the following parameters r and w as above.

1. Generate h0,h1 ∈ R both of odd weight and |h0| = |h1| = w
2
.

2. Generate g ∈ R where g has odd weight and |g| ≈ r
2
.

3. Find h = (h1h
−1
0 ).

Encapsulation

1. Let (e0, e1) ∈ R2 so that |e0| = |e1| = t.

2. Now generate m ∈ R where m is our message.

3. Calculate the cipher text c = e0 + e1h

4. Finally, compute K ← K(e0, e1)

Decapsulation

1. First we break up c as c0, c1 and calculate the syndrome s = (c0h0)

2. We decode s to recover the error vector e′0, e
′
1.

3. If (e′0, e
′
1) 6= t then the decoding has failed and we output the failure symbol.

4. Otherwise compute the following K = K(e′0, e
′
1).
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Scrambling Techniques

The main scrambling technique done in the BIKE cryptosystem is that the private code is
hidden by first multiplying a sparse private matrix by any random dense cyclic block of the
parity check matrix H. One of the advantages of this cryptosystem is the use of Quasi Cyclic
Codes. One of the disadvantages of this is the size of the public key is doubled because the
public key does not contain an identity block anymore.

4.4.3 Ledacrypt

This cryptosystem is based on Low Density Parity Check codes. Low Density Parity Check
codes have a sparse parity check matrix. There are two variants based on the McEliece and
Niederreiter cryptosystems. We will describe each of these in detail. The first one we will
describe is the Niederreiter cryptosystem. After, we will describe is the McEliece variant of
the cryptosystem [12] [9] [11] [28].

Key Generation

Consider we have a QC-LDPC with codeword n = rn0 and n0 where n0 ∈ {1, 2, 3, 4} and r
is a prime number such that ordr(2) = r− 1. First we generate two random binary matrices
that correspond to H and Q. H is a secret quasi-cyclic r × rn0 parity check matrix. Q is a
rn0 × rn0 quasi-cyclic sparse binary matrix. The matrix H is composed of 1× n0 circulant
blocks that each have size r × r. Also, each row and column should have a fixed number of
odd elements. We denote this as dv. So, H has the following structure:

H = [H0, H1, ..., Hn0−1]

and w(Hi) = dv and 0 ≤ iMn0.
Now we describe Q. Each block of Q will have a certain weight. This will then correspond

to a circulant matrix of integers that we will denote wQ. We must have that the matrix Q
is invertible. So because of this, the possible weights of each block are restrictive. Next we
compute the product L = HQ where L has the same rank as H. So

L = [L0, L1, . . . , Ln0−1 ]

Next, the following matrix M is computed,

M = L−1n0−1L = [M0|M1|M2| . . . |Mn0−2|Ir] = [Ml|I]

In this case, I will be a r × r identity matrix. We let the Matrix M be the parity check
matrix of the public code. The private key is (H,Q).

37



Encryption

We let the message m be a 1× rn0 binary vector e. To get the syndrome s which is a r× 1
vector we multiply the following,

s = [M0| · · · · · ·Mj| · · · |Mn0−2|I]eT .

The syndrome is then the ciphertext.

Decryption

First we will compute the following,

s′ = Ln0−1s = HQet = H(QeT ) = H(eQT )T .

The new error vector e′ = eQT . Then apply the decoding algorithm for QC-LDPC on s′ to
recover e′. Now we look at the McEliece version of Ledacrypt.

Key Generation

The Key Generation for the McEliece cryptosystem is the same as the Niederreiter cryp-
tosystem.

Encryption

For the McEliece variant, we have a 1 × r(n0 − 1) vector u as the message and an error
vector e. The public key is is the Quasi cyclic generator matrix with size (n0 − 1) × n0 so,
the public key is

G = [Z|[M0| . . . |Mn0−2]
T ]

where Z is a diagonal block matrix that is composed of n0−1 copies of the identity circulant
block I. We do this so the generator matrix is in systematic form. The output is a ciphertext
c that has an associated error. We compose c in the following way:

c = [e0 | · · · | en0−2 | en0−1] + [u0 | · · · | un0−2 |
∑n0−2

j=0 ujMj].

Decryption

We compute s = LeT . Apply the decoding algorithm for QC-LDPC codes on s to get back u.

38



Scrambling Techniques

The scrambling done on the Ledacrypt cryptosystem is done by scrambling the parity check
matrix and constructing it as described above.

4.4.4 Rollo

Rollo (Rank-Ouroboros, Lake, and Locker) are three different cryptosystems that are based
on rank metric codes. These cryptosystems are referred to as Rollo-I, Rollo-II, and Rollo-III.
For our purposes, we will only look at Rollo-II which is based in Public Key Encryption.
One of the interesting properties about this cryptosystem are they have the same decoding
procedures as Low Rank Parity Codes. We will define some necessary terms, describe the
cryptosystems, as well as discuss the advantages and disadvantages of the scrambling process
they employ [17] [7] [22] [4].

We will denote Snw(Fmq ) be the set of vectors of length n and rank weight w over Fmq .
Similarly let Sn1,w(Fmq ) be the set of vectors of length n and rank weight w over Fmq such that
its support contains 1. Let P be an irreducible polynomial of Fq[x] of degree n and is one of
the given parameters of the cryptosystem. The RSR (Rank Support Recover) algorithm is a
decoding algorithm that is based on Low Rank Parity Codes. Note that ⊕ is the Bit XOR
algorithm. The algorithm takes two inputs values (in this case two vectors of equal length)
and compares each bit side by side and returns a 0 if both values are 0 or 1 and returns 1
otherwise. Now we will describe the cryptosystem.

Key Generation

1. Choose (x,y) ∈ S2n
d (Fmq ).

2. Let h = x−1y mod P .

3. The private key is h and the secret key sk = (x,y).

Encryption

1. Choose (e1, e2) ∈ S2n
r (Fmq ).

2. Let E = Supp(e1, e2).

3. Let c = e1 + e2h mod P .

4. Next, compute cipher = M⊕ Hash(E). The ciphertext is then C = (c, cipher).
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Decryption

1. Let s = xc mod P and F =Supp(x,y).

2. Let E ←RSR(F, s, r).

3. Finally, return M = cipher ⊕ Hash(E).

Scrambling Techniques

The scrambling for this cryptosystem is done on the error vectors as well as on the ciphertext.
As we can see in the above we first hide the message by performing a Hash function on the
error and then combining this with an operator on the original message. We then have a
two part ciphertext. The interesting thing about this method is that no generator matrix or
parity check matrix is involved. The scrambling is done on the actual ciphertext itself. Also,
there is a two part ciphertext which also helps hide the message. One of the disadvantages
of this though is that the ciphertext size is doubled. However, because rank metric codes
are hard to decode in general, this does not have a huge impact.

4.4.5 RQC

RQC (Rank Quasi Cyclic) is an encryption scheme based on two codes. The structure of
this cryptosystem is very similar to HQC. The two codes that RQC use are ideal codes and
Gabidulin codes. We will discuss the structure of this cryptosystem [8] [2]. For the setup,
we look a the following:

Let Gg(n, k,m) be a Gabidulin code with generator matrix G that is capable of correcting
δ errors by its efficient decoding algorithm. As mentioned above the second code is a random
ideal [2n, n] code with parity check matrix (1,h). We will denote Snw(Fmq ) be the set of vectors
of length n and rank weight w over Fmq and similarly let Sn1,w(Fmq ) be the set of vectors of
length n and rank weight w over Fmq such that its support contains 1. Now we look at the
following:

Key Generation

1. Let h ∈ Fnqm .

2. Let g ∈ Snn(Fmq ).

3. Let the secret key be (x,y) ∈ S2n
1,w(Fmq ).

4. Let the private key pk = (g,h, s = x+ h · y) mod P .
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Encryption

1. Generate (e,r1,r2) ∈ S3n
wr

(Fm
q ).

2. Let u = r1 + h · r2 mod P .

3. Let v = mG+ s · r2 + e mod P . The ciphertext is c = (u,v)

Decryption

For decryption the decoding algorithm Gg.Decode is going to decode (v− u · y) mod P .

Scrambling Techniques

The scrambling on the cryptosystem is done on the ciphertext. It is essentially very similar to
the one proposed by [1] but it is implemented with two different codes Ideal and Gaibuldin.
The advantages of this are similar to the ones as described above in [1].

4.4.6 NTS KEM

The last encryption scheme we will discuss is NTS KEM. NTS KEM is a variant of the two
cryptosystems McEliece and Niederietter (both public encryption schemes) but using a key
encapsulation scheme. This cryptosystem is focused on the secure communication that goes
along with the random key. Now we will introduce some notation and ideas that are essential
in this cryptosystem. After we will discuss the key encapsulation, and key decapsulation.
Finally, we discuss the scrambling techniques that were used [25] [24] [15] [14] [16] [35] [5] .

Definition 4.4.1. Let v ∈ Fn1 and w ∈ Fn2 . We will denote (v|w) as the concatenation of
vectors v and w. Note, (v|w) ∈ Fn1+n2 .

Let e be a vector of length n. Then we can partition e into three sub-vectors by:
e = (ea, eb, ec) where ea ∈ Fk−l, eb ∈ F1, ec ∈ Fn−k.

Definition 4.4.2. A permutation π is an ordered sequence of n elements. We can often
represent the permutation as a matrix P ∈ Fn×n2 where there is exactly an entry of 1 in each
row and column and zeroes everywhere else. Instead of a matrix, a permutation can also be
represented by a permutation vector p where p = (p0, p1, ..., pn−1) where pi is row of p that
that has 1 at column i.

Now let Hl(.) be a function which is a pseudo random bit generator that produces a l-bit
binary string and a hash function is used to implement this generator. More details are
provided in [5].
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Parameters

The following parameters are needed:

1. n = 2m.

2. τ : the number of errors corrected by the code.

3. f(x) an irreducible polynomial of a degree m over F2.

4. l = 256 which is the length of the random key to be encapsulated.

Key Generation

Below are the steps:

1. Generate a monic Goppa polynomial of degree r. So we have

G(z) = g0 + g1z + · · ·+ gτ−1z
τ−1 + zτ .

The polynomial G(z) corresponds to a binary Goppa code of length n = 2m, dimension
k = n− τm.

2. Generate a permutation vector p of length n.

3. Generate a generator matrix of the form G = [Ik|Q] as follows:

Let β be a root of f(x) and B be a basis of F2m where B = 〈βn−1, . . . , β, 1〉. Then
the i-th element in F2m in the basis of B is defined as

B[i] = {b0βm−1 +b1β
m−2 + · · ·+ bm−2β + bm−1}.

We let a′ = (a0, a1, . . . , an−2, an−1) = (B[0], B[1], . . . , B[n− 2], B[n− 1]). Let
a = πp(a′) = (ap0 , ap1 , . . . , apn−1).

Construct parity check matrixHm as using the sequence a and Let h = (hp0 , hp1 , . . . , hpn−1)
be the first row ofHm. See [5] to see how h is constructed. LetB(ai) = (bi0, bi1, . . . , bi(m−1))
be a representation of ai over F2, that is,

ai = bi0 + bi1β + bi2β
2 + · · ·+ bi(m−1)β

m−1
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where bij ∈ F2. We then replace each entry of Hm with B(·)T to get H . B(·)T is
described in more detail in [5].

Put H into reduced row echelon form. Let ρ denote the reordering of the columns
of H. Apply the reordering to the vectors a,h,p that is a = ρ(a), h = ρ(h), and
p = ρ(p),

Let H = [QT | In−k] and so G = [Ik|Q]

4. Generate z ∈ F l
2 at random.

5. Partition a and h so a = (aa,ab,ac) and h = (ha,hb,hc). Now we will let a∗ = (ab,ac)
and h∗ = (hb,hc).

The public key is (Q, τ, l) and the private key is (a∗,h∗,p, z, pk).

Encapsulation

1. Partition e

2. Compute ke = Hl(e) ∈ Fl2.

3. Let m = (ea | ke) ∈ Fk2

4. Let

c = (m |m ·Q) + e

= (ea | ke | (ea | ke) ·Q) + (ea | eb + ec)

= (0a | ke + eb | (ea | ke) ·Q+ ec)

= (0a | cb | cc)

5. Output: (kr, c
∗)

Decapsulation

1. Look at the vector c = (0a|cb, cc) ∈ Fn2 and apply a decoding algorithm.

2. Compute the error vector e = πp(e′) and partition e into three parts.

3. Calculate (kr, c
′). Check to see that c′ = c∗ and the hamming weight of e is τ . Return

kr if yes. Otherwise, return Hl(z | 1a | 1b | cc).
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Scrambling Techniques

Several scrambling techniques are done on this cryptosystem. One scrambling method is
disguising the parity check matrix by using the function B(·)T as well as using a permutation
to permute a. The ciphertext is also scrambled by having a two part ciphertext that is the
message itself as well as m · Q. So in this cryptosystem they use both techniques we have
seen in the past to create a more secure cryptosystem.
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Chapter 5

Conclusion

Our research was aimed at finding a new scrambling technique that could be generalized
for future cryptosystems. In the thesis we first looked at various scrambling techniques that
are used in place today such as the ones used in [10], [32], and [1] to create a more secure
cryptosystem. We then looked in more detail at the cryptosystem proposed by Aguilar and
Melchor [1] and demonstrated their algorithm on an example. Our goal was to model a
more generalized cryptosystem based on the scrambling technique that they proposed. We
then described some of the challenges we had in developing this new cryptosystem. Through
these challenges, we then discovered several conditions we believe a new cryptosystem should
have in order to be secure, generalized, as well as efficient, thus building a framework for the
mathematical requirements for such cryptosystems. Finally, we analyzed and discussed the
various scrambling techniques that are being proposed in the NIST post quantum competi-
tion.

Finding different ways to scramble is an integral part of keeping a cryptosystem secure.
This will be more evident in the future as we saw with the NIST cryptosystems. The NIST
cryptosystems use a few different techniques to scramble such as scrambling the ciphertext,
scrambling the parity check matrix, scrambling the generator matrix, etc. So, the different
ways scrambling occurs in these NIST post quantum cryptography finalists is going to have
a considerable impact on whether the data we transmit in our electronic based world will
be secure or not in the future. This is why the methods that we can develop for scrambling
cryptosystems play such a key role in code based cryptography.

5.1 Open Questions

Future work will include finding an operation for the proposed cryptosystem that follows the
conditions of being commutative, associative, as well as generalizing the operation based on
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linear transformations. In connection with such a cryptosystem, the concept of scrambling
the structure seen further can come into picture. To this end, it will be of practical value to
see if we can hide the linear transformation. A possible direction is to see if we can create
a two part operation, one that is public and one that is private. These measures would
make the cryptosystem much more secure than the current schemes that are in use and may
potentially perform better.
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