
GENERALIZED QUASI-BCH CODES AND APPLICATIONS IN

CRYPTOGRAPHY

By Pauline Gonzalez

A Thesis

Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

in Mathematics

Northern Arizona University

May 2020

Approved:

Bahattin Yildiz, Ph.D., Chair

Nandor Sieben, Ph.D.

Michael J Falk, Ph.D.

ABSTRACT

GENERALIZED QUASI-BCH CODES AND APPLICATIONS IN
CRYPTOGRAPHY

PAULINE GONZALEZ

Code based cryptography is a field of cryptography that has started to gen-

erate a considerable interest recently due to the emerging threat of quantum

computation on the current cryptosystems. Even though the earliest example

of a code-based cryptosystem was introduced at the same time as the RSA as

the first examples of public key cryptosystems more than four decades ago, the

McEliece cryptosystem was not chosen for practical applications due to its large

key size. Recent variants of the McEliece cryptosystem have focused on a few

improvements on the original cryptosystem, i.e., reducing the key size to make it

computationally efficient and to increase the security by taking counter measures

against certain attacks. A common theme in reducing the key size is using codes

that have a compact description, such as cyclic codes, quasicyclic codes, etc.

In this thesis, we consider a special family of codes that are named generalized

quasi-BCH codes, which are codes that have a compact description, an efficient

decoding algorithm and some additional security advantages that many of the

current cryptosystems lack. The main advantage of our scheme is that we use

blocks of different lengths, which makes it hard for the intruders to guess the

structure of our code and also, it increases the error correction capability under

certain circumstances. After an overview on codes and code based cryptography,

we introduce generalized quasi-BCH codes and demonstrate how they can be

used to design a new cryptosystem. We give several examples and make compar-

isons in terms of security and error-correction with the other schemes that use

codes.

ii

Acknowledgements

First of all, I would like to thank Dr. Bahattin Yildiz for his support through this

master’s. It was a pleasure working with him and learning so much about coding theory

and research. I appreciate that he trusted me for almost two years with this project. Thank

you to Dr. Sieben and Dr. Falk for agreeing being on my committee and giving me advice,

making me a better student. I wanted to show my gratitude to the NAU math department

for being so supportive during these two years and especially to Jeff Rushall for giving

me my first research opportunity three years ago and bringing back the passion I had for

mathematics.

Table of Contents

List of Tables . v

Chapter 1 Introduction 1

Chapter 2 Background 5

2.1 Coding Theory . 5

2.1.1 Linear Codes . 5

2.1.2 Syndrome Decoding . 8

2.1.3 Cyclic Codes . 9

2.2 Different types of codes . 11

2.2.1 BCH codes and their decoding algorithm 11

2.2.2 Reed-Solomon Codes . 19

2.2.3 Quasi-Cyclic Codes . 20

2.2.4 Generalized Quasi-Cyclic Codes . 21

2.2.5 Goppa Codes . 23

Chapter 3 Generalized Quasi-BCH Codes and Their Decoding 25

Chapter 4 Designing Code-Based Cryptosystems Using Generalized Quasi-

BCH Codes 28

Chapter 5 Conclusion 38

Appendix A Mathematica Codes 40

Bibliography 43

iv

List of Tables

2.1 Powers of the roots of 1 + x+ x4. 15

2.2 Powers of the root of 1 + x3 + x4. 17

3.1 Powers of the root of 1 + x+ x3. 27

4.1 Powers of the roots of 1 + x+ x2, 1 + x+ x3, and 1 + x+ x4 respectively. . . 36

4.2 Powers of the root α of 1 + x2 + x5. 36

4.3 Powers of the root β of 1 + x+ x3 + x4 + x6. 37

v

Chapter 1

Introduction

Coding theory emerged as a field to solve the engineering problem of transmitting digital

information over a noisy channel so that the errors that occur during this transmission can be

detected and corrected. The starting point of coding theory was the works of Shannon and

Hamming in the late 40’s, early 50’s [13, 19, 11]. To communicate using codes, first we need

to encode the information that will be transmitted. The second step is error correction, in

other words, decoding. Lastly, we want to extract the original message. Therefore the main

goal of this field of studies is to find ways to correct errors in transmissions. That is why

coding theory has many applications in systems of communication such as data compression,

cell phones, and several others. The main mathematical fields that we are using in coding

theory are group theory, number theory, finite fields theory, and the algebra of polynomials.

Information theory has two distinct areas that we are going to look at, the theory of error

correcting codes and cryptography. They both address different issues in communication.

One application for the theory of error correcting codes is code based cryptography which

gives us a link between these two distinct areas. We will describe the difference between

traditional cryptography using asymmetric key encryption and code based cryptography.

In the traditional cryptography using asymmetric key encryption, the sender sends the

plaintext to the receiver using the public key, or encryption key. Then the ciphertext can

be decoded using the coupled private key, also called decryption key. To encode a codeword

in Code Based Cryptography, the sender encodes the codeword and then modifies it before

transmission, the receiver knows the secret to decode the message so decoding is easy.

1

The idea of public key cryptosystems was introduced in 1976. Two years later, two well-

known cryptosystems were instituted, RSA and the McEliece cryptosystem (MECS), [16].

MECS is based on the algebraic theory of error correcting codes whereas RSA is based on

asymmetric key encryption. When introduced, RSA became the favored cryptosystem be-

tween the two, mostly because of the large key size of MECS, even though the latter has faster

encryption and decryption algorithms compared to more popular public key cryptosystems.

Recently, MECS has aroused interest since it is a candidate for post-quantum cryptogra-

phy. Many of the public key cryptosystems that were more popular than MECS are based

on the presumed difficulty of certain computational problems such as the discrete logarithm

problem, the elliptic curve problem or the integer factorization problem in RSA. These prob-

lems, and others, can be solved efficiently using post-quantum computers. Therefore, these

cryptosystems will not be secure anymore in the area of post-quantum computing while

MECS is based on the fact that the decoding of a general linear code is computationally

intractable, and so far, there has not been found an efficient quantum algorithm [23, 9, 6].

The McEliece cryptosystem is still a secure system if the parameters that we are using are

large enough. It uses Goppa codes [12, 8], algebraically defined error correcting codes, which

have an efficient decoding algorithm. We will now describe how the McEliece cryptosystem

works. Let C be an [n, k, 2t + 1] binary t-error correcting Goppa code of length n and

dimension k with generator matrix Gk×n. It is constructed via a randomly chosen irreducible

polynomial of degree t over GF (2t). Let S be a random, dense k × k non-singular matrix,

P be a random permutation matrix, and let G′ = SGP . Note that G′ generates a linear

code that has the same parameters and error correction capability as C. This is how the

McEliece cryptosystem works.

• Public Key: G′ and t

• Private Key: G,S, P

• Plaintext Space: m ∈ Fk2, the set of all k-bit vectors.

• Encryption: Encrypt the plain text m into c = mG′ + e, where e ∈ Fn2 is a randomly

chosen vector of weight at most t. i.e., wH(e) ≤ t.

2

• Decryption:

– Compute c′ = cP−1 = (mS)G+ eP−1.

– Decode c′ with the fast decoding algorithm for C to obtain m′.

– Recover m = m′S−1.

MECS is efficient mainly because of two reasons. First, there exists an efficient decoding

algorithm which is not the case for arbitrary linear codes. The other thing is the structure of

Goppa codes in MECS is hidden using random matrices to scramble the original generator

matrix. If the structure is well hidden and the message sent is intercepted, then it won’t be

able to be decoded.

Recent research have been focusing on finding an alternative to MECS codes that would

use a smaller key size without compromising the security of the code. Some of these varia-

tions have been proved to be vulnerable under certain types of attacks. The LDPC MECS

was one of the first variants introduced, using LDPC codes to have an efficient decoding

algorithm [17]. Later on, another variant was proposed using Quasi-Cyclic LDPC codes

[4], this approach reduced the key size but was vulnerable to attacks that were focusing on

finding low weight codewords.

In order to have an ideal code we would need an efficient decoding algorithm, a reduced

key size and a resistance to the attacks that are known. In our research, we want to reach

this goal by using a well-known family of codes, BCH codes, and generalize them in order to

be able to hide the structure of the code having a preexisting efficient decoding algorithm.

Our goal is to find a type of codes that would still be relevant in a post-quantum com-

puting context, which means the decoding algorithm would be secure against attacks via

quantum computers. We have talked earlier how most of the cryptosystems known are using

problems that are proven to be broken using post-quantum computers. We did not use any

of the latter problems which makes us think that our cryptosystem could still be useful in a

time where post-quantum computers will be in effect. To be able to construct such a code,

we are going to start, in Chapter 2, with some background information on Coding theory

3

and Code-Based Cryptography. We will give some necessary definitions and properties of

codes and talk about some examples of codes with a well-known decoding algorithm. Then,

in Chapter 3, we will look at a generalization of Quasi BCH codes and their decoding al-

gorithm. In Chapter 5, we will design a code-based cryptosystem based on the Generalized

Quasi-BCH codes described in Chapter 4. Finally we will conclude with some open questions

and future research.

4

Chapter 2

Background

2.1 Coding Theory

First and foremost, we need to give introductory definitions.

Definition 2.1.1. Let q = pm, where p is a prime number and m ∈ N, and GF (q) = Fq the

finite field of size q. A subset of Fnq is called a code of length n over Fq.

2.1.1 Linear Codes

When looking at codes, we are going to focus our attention on linear codes since their

decoding algorithms are usually easier to find and to compute. Since we are exclusively going

to work with linear codes, let us give a formal definition.

Definition 2.1.2. Let Fq be a finite field of order q. A linear code C over Fq of length n is

a vector subspace of Fnq . An element of a code C is a codeword.

Another representation that we will use for a codeword c is its associated polynomial

c(x) = c0 + c1x+ . . .+ cn−1x
n−1. This defines a vector space isomorphism which establishes

a key link between coding theory and algebra. This notation is useful when studying cyclic

codes and their multiple generalizations, which is a big part of algebraic coding theory. We

will give some definitions to characterize codes.

Definition 2.1.3. When q = 2, we call the codes over Fq binary codes. When q = 3, they

are called ternary codes. More generally, codes over Fq are called q-ary codes.

5

Definition 2.1.4. If C is a k-dimensional subspace of Fnq , then C is a [n, k]q-code, where n

is the length of C.

Definition 2.1.5. The Hamming distance of two codeword of C is the function

d : C × C → N ∪ {0}

(u, v) 7→ |{i : ui 6= vi}|.

We need the Hamming distance to define the minimum distance of a code C which is the

minimum distance between each distinct pairs of codewords of C, we usually denote it d(C)

or just d.

Definition 2.1.6. Let C be a linear code of length n over Fnq , of dimension k and minimum

distance d. Then we say that C is a [n, k, d]q-code.

Now let us give a way to find the minimum distance of a code C.

Definition 2.1.7. The Hamming weight of a codeword u of C is defined as

w(u) :=| {i | ui 6= 0} |.

It is the number of nonzero coordinates in u.

Definition 2.1.8. The minimum Hamming weight of C, denoted w(C), is the minimum

weight of all codewords of C, i.e. w(C) = min{w(u), | u ∈ C, u 6= 0}.

Theorem 2.1.9. ([3]) Let C be a linear code over Fq. Then

d(C) = w(C)

We can now construct the Hamming weight enumerator.

6

Definition 2.1.10. The Hamming weight enumerator of a code C is defined by the following

polynomial

WC(y) =
∑
u∈C

yw(u)

=
∑
i

Aiy
i

where Ai =| {u ∈ C,w(u) = i} |.

Definition 2.1.11. The minimum distance of a code C is

d(C) := min{d(u, v) | u, v ∈ C}.

It is usually denoted d or d(C).

We note that the smallest nonzero power of y appearing in the Hamming weight enumer-

ator is the minimum distance of the code C.

Definition 2.1.12. An k × n matrix whose rows form a basis for an [n, k]-linear code C is

called a generator matrix for C, usually we denote it by G.

Definition 2.1.13. A systematic matrix is a generator matrix of the form [Ik | A] where A

is a k × (n− k) matrix over Fq.

Then every linear code has a systematic matrix since we can find a generator matrix and

take its row echelon form.

Definition 2.1.14. Let C be a linear code of length n over Fq. The dual code C ⊥ of the

code C is the orthogonal complement of the code C as a vector subspace of Fnq .

Definition 2.1.15. A Parity-Check matrix for an [n, k]-linear code C is an n−k×n generator

matrix for the dual code C⊥ of the code C. We usually denote this matrix H.

If the generator matrix G of a code C can be written of the form [Ik | A], where A is a

k × (n− k) matrix, then the parity check matrix for the code C that corresponds to G can

be written in the form H = [−AT | In−k].
Another way to determine the minimum distance, or a bound for the minimum distance

of a code, is by using its parity-check matrix.

7

Theorem 2.1.16. ([3]) Let C be a linear code over Fq and let H be a parity-check matrix

for C. Then

• C has minimum distance greater than or equal to d if and only if any d − 1 columns

of the matrix H are linearly independent,

• C has minimum distance less than or equal to d if and only if the matrix H has d

columns that are linearly dependent.

Now, the following corollary of this theorem gives us the distance of a linear code by

combining both characterizations.

Corollary 2.1.17. ([3]) Let C be a linear code over Fq and H be a parity-check matrix for

C. Then C has minimum distance d if and only if any d − 1 columns of H are linearly

independent and H has d columns that are linearly dependent.

Some well-known families of codes have efficient decoding algorithm due to their partic-

ular algebraic structures. They include Hamming Codes, BCH codes, Constacyclic codes,

Quasi-cyclic (QC) codes, Quasi-twisted (QT) codes, Reed-Solomon codes, Goppa codes. For

example, an efficient decoding algorithm for BCH codes is the Berlekamp algorithm that

uses the polynomial version of the extended Euclidean algorithm, and the algorithm is of

polynomial complexity, O(qn3), where n is the degree of the polynomial in Fq, [7]. This

decoding algorithm for BCH codes was the most efficient for almost fifteen years. Based on

this, Patterson constructed an efficient decoding algorithm for Goppa codes by building a

variation of Berlekamp’s algorithm [18]. We will talk more in details about some of these

codes and their decoding algorithm in later sections.

2.1.2 Syndrome Decoding

When decoding a codeword received, a method to save time would be to calculate the

syndromes of this codeword, which is finding in what coset it belongs.

Definition 2.1.18. Let C be an [n, k]q-linear code over Fq and let H be a parity-check

matrix for C. Then the syndrome of a codeword w ∈ Fnq is defined as follows :

SH(w) = wHT ∈ Fn−kq .

8

Note that since the parity-check matrix of C is not unique, the syndrome depends on the

one that we choose.

Let us give some properties of syndromes.

Theorem 2.1.19. [3] Let C be an [n, k]q-linear code over Fq and H be a parity-check matrix

for C. Suppose u, v ∈ Fnq , then

(a) SH(u+ v) = SH(u) + SH(v),

(b) SH(u) = 0 if and only if u is a codeword in C,

(c) SH(u) = SH(v) if and only if u and v are in the same coset of C.

With the last property of the theorem, we notice that a coset can be identified using its

syndromes, the syndrome of a coset is the syndrome of any of the words in the coset since

they all have the same syndrome. Hence there is a one to one correspondence between cosets

and syndromes.

2.1.3 Cyclic Codes

Looking at linear codes, we have seen that they can be described using their generator

or parity-check matrix, we needed the Hamming weight to determine the minimum distance

of the code. Researchers in Code-Based Cryptography started to investigate special types

of linear codes in order to describe codes and encode and decode them in an easier way. In

cyclic codes, the cyclic shift of a codeword is still in the code, this property leads to simpler

encoding and decoding, we hence need an algebraic structure to create codes that have this

property. That is why algebra has taken such a big part of Coding theory.

Definition 2.1.20. A code C of length n over Fq is cyclic if for all codeword

c = (c0, c1, . . . , cn−1) in C, the left shift (c1, . . . , cn−1, c0) is an element of C.

We want to have an algebraic structure on the code to be able to write the codewords

of a code in the form of a polynomial. Let p be the function that sends (c0, c1, . . . , cn−1) to

c(x) = c0 + c1x+ · · ·+ cn−1x
n−1.

We want to connect ideals of Fq[x]�(xn − 1) to cyclic codes.

9

Theorem 2.1.21. ([2]) Let C be a nonempty subset of Fnq . Then C is a cyclic code if and

only if p(C) is an ideal of Fq[x]�(xn − 1).

Theorem 2.1.22. ([2]) Let I be a non zero ideal of Fq[x]�(xn − 1) and g(x) be a nonzero

monic polynomial in I of least degree in I. Then g(x) is a generator for I, that is (g(x)) = I

and g(x) | (xn − 1).

Now that we have these characterization of generator polynomials for ideals of
Fq[x]�(xn − 1), we want to give a definition for generator polynomials of a cyclic code.

Definition 2.1.23. Let C be a cyclic code. Then the unique polynomial that generates the

ideal p(C) is called generator polynomial of C.

The following theorem gives us a one to one correspondence between cyclic codes in Fnq
and monic divisors of xn − 1.

Theorem 2.1.24. ([2]) Each monic polynomial that divides xn − 1 generates a cyclic code

in Fnq .

Theorem 2.1.25. ([2]) Let the factorization of xn−1 be
r∏
i=1

peii (x) where each pi are distinct

irreducible monic polynomials and ei ≥ 1. Then there are
r∏
i=1

(ei + 1) cyclic codes of length

n over Fq.

Therefore if we know the factorization of xn − 1, we know how many cyclic codes over

Fnq there are.

Theorem 2.1.26. ([2]) Let C be a cyclic code of length n over Fq and g(x) be its generator

polynomial. Then the dimension of the code C is k where deg(g(x)) = n− k.

Hence, to determine all the parameters of a cyclic code, we only need the generator

polynomial of this code.

10

2.2 Different types of codes

2.2.1 BCH codes and their decoding algorithm

Binary BCH, which is an acronym for Bose-Chaudhuri-Hocquenghem, codes were in-

vented in 1959 by Alexis Hocquenghem in [14] and generalized to BCH codes in 1960 by Raj

Chandra Bose and Dwijendra Kumar Ray-Chaudhuri in [10].

This category of codes is a generalization of Hamming codes that can detect and decode

multiple errors in a transmission whereas Hamming codes can only decode single errors.

BCH codes are a class of cyclic codes, it is one of the best family of cyclic codes in terms of

error-decoding. We will see in this section two different types of BCH codes, namely narrow

sense, primitive BCH codes. We will also talk about one of the efficient decoding algorithms

for BCH codes and the BCH bound.

Definitions

Definition 2.2.1. Let α ∈ Fqm be of order n, let be b and d two integers such that 0 ≤ b < n

and 2 ≤ d ≤ n. A BCH-code is a cyclic code over Fq defined by the following (d − 1) × n
parity check matrix over Fqm :

H =

1 αb α2b · · · α(n−1)b

1 αb+1 α2(b+1) · · · α(n−1)(b+1)

...
...

...
...

...

1 αb+d−2 α2(b+d−2) · · · α(n−1)(b+d−2)

 .

The first row of H consists of the first n consecutive powers of αb.

Let us define specific types of BCH codes.

Definition 2.2.2. Let α be a primitive element of Fqm . Then the BCH code defined by α

is called a primitive BCH code.

We can also define primitive BCH codes using a generator polynomial. Let α be a

primitive root of Fqm . Let mi(x) ∈ Fq[x] be the minimum polynomial of αi. Then a

11

primitive BCH code over Fq of length n = qm − 1 is a code generated by the polynomial

g(x) := lcm(mb(x),mb+1(x), . . . ,mb+δ−2(x)), where δ ∈ N is called the designed distance of

the code and b is an integer.

If we have a primitive BCH code over Fqm , then the length of this BCH code is n = qm−1,

which is, for Fqm , the maximum length possible.

Definition 2.2.3. A BCH code with b = 1 is called a narrow-sense BCH code.

Definition 2.2.4. If the minimum distance of the BCH code is d = 2t + 1 or d = 2t + 2,

then we say that the code is t-error-correcting.

Let C be a t-error correcting primitive narrow-sense BCH code over Fq with decoder

alphabet Fqm . Then a parity-check matrix H for C is

H =

1 α α2 · · · α(n−1)

1 α2 α4 · · · α2(n−1)

...
...

...
...

...

1 α2t α4t · · · α2t(n−1)

where n = qm − 1 is the blocklength of C.

BCH Bound

Let a be a nonzero element of Fq such that a does not have an n-th root in Fq and

gcd(n, q) = 1. Because q and n are relatively prime, xn − a does not have multiple roots.

The roots of the polynomial xn−a are δ, δζ, δζ2, . . . , δζn−1 where δn = a and ζ is a primitive

n-root of unity. Let m = ordq(n) be the multiplicative order of q modulo n. Then ζ ∈ Fqm .

Let r be the multiplicative order of a in F∗q, we can write a = αi where α is a primitive

element of Fq and i a positive integer. Then r = q−1
gcd(i,q−1) and δn

r
= ar = 1. Therefore δ

is an nr-th primitive root of one, hence δ ∈ Fqs where s = ordq(nr). We have qs − 1 ≡ 0

mod nr, which implies that qs − 1 ≡ 0 mod n and since m = ordq(n), this implies that

m | s, therefore Fqm ⊆ Fqs . Hence ζ, δ ∈ Fqs . Let ω be a primitive element of Fqs . Then

there exists some integer t such that δ = ωt and ζ = ωrt = δr. We also have qs − 1 = ntr.

12

Then we can write xn − a as

xn − a =
n−1∏
i=0

(x− δζ i)

=
n−1∏
i=0

(x− δ1+ir).

For each i, x − δ1+ir is an irreducible factor of xn − a that corresponds to a cyclotomic

coset modulo nr. Since we know that δ, δζ, δζ2, . . . , δζn−1 are all nr-th primitive root of

unity, the polynomial xn− 1 divides xnr− 1 and (xnr− 1) | (xn(q−1)− 1) | (xqs−1− 1). Hence

xn − a divides xq
s−1 − 1.

Theorem 2.2.5. [1] If the parity-check matrix of a BCH code has δ− 1 rows, then we have

dmin ≥ δ where δ is the designed distance of the code.

Theorem 2.2.6. ([15])

(1) Let C be a BCH code over Fq of length qm − 1 and generated by

g(x) := lcm(mb(x),mb+1(x), . . . ,mb+δ−2(x))

. Then the dimension of C is independent of the choice of the primitive element α.

(2) A BCH code over Fq of length qm − 1 and designed distance δ has dimension at least

qm − 1−m(δ − 1).

Proposition 2.2.7. ([15]) Let C be a narrow-sense q-ary BCH code of length qm − 1 and

designed distance δ. If q 6= 2 and gcd(qm − 1, n) = 1 for all 1 ≤ n ≤ δ − 1, then dim(C) =

qm − 1−m(δ − 1).

Proposition 2.2.8. ([15]) Let C be a narrow-sense binary BCH code of length n = 2m − 1

and designed distance δ = 2t+ 1. Then dim(C) ≥ n− m(δ−1)
2

.

The designed distance of a BCH code and its minimum distance can be related by the

next theorem.

13

Theorem 2.2.9. ([15]) If the designed distance of a code is δ, then its minimum distance

is at least δ.

Decoding BCH codes

Let C be a BCH code over Fq of length n = qm − 1 Suppose that we have ν errors,

where ν ≤ t and that these ν errors are in locations i1, . . . , iν . Let Y1, . . . , Yν be the error

magnitudes.

Definition 2.2.10. Let α be a n-th root of Fqm . The partial syndromes Sj of a word y are

defined as :

Sj := Y1(α
i1)j + . . .+ Yν(α

iν)j

for each 1 ≤ j ≤ 2t.

Now let Xj := αij , we can write Si =
ν∑
j=1

YjX
i
j.

Example 2.2.11. Since

x15 − 1 = (1 + x)(1 + x+ x4)(1 + x+ x2 + x3 + x4)(1 + x3 + x4)(1 + x+ x2)

is the prime factorization over F16, we can construct F16 using a polynomial of degree 4. We

are going to construct it using the polynomials 1 + x+ x4 and 1 + x3 + x4.

Let C be the BCH code of length 15 generated by the polynomial

g(x) = 1 + x+ x3 + x4 + x5 + x7 + x8 = (1 + x+ x4)(1 + x3 + x4).

First of all, we want to know how many error C can decode.

If α be a root of g(x) then we have two cases, α is a root of 1 + x + x4 or α is a root of

1 + x3 + x4.

Let α be such that 1 + α + α4 = 0. Then

F16 ∼= F2[x]�〈1 + x+ x4
〉 = {0, 1, α, α2, . . . , α14}

14

i αi

0 1
1 α
2 α2

3 α3

4 1 + α
5 α + α2

6 α2 + α3

7 1 + α + α3

8 1 + α2

9 α + α3

10 1 + α + α2

11 α + α2 + α3

12 1 + α + α2 + α3

13 1 + α2 + α3

14 1 + α3

Table 2.1: Powers of the roots of 1 + x+ x4.

. We have that α3, α6, α9 and α12 are roots of 1 + x + x2 + x3 + x4 and α7, α11, α13, α14 are

roots of the polynomial 1 + x3 + x4. Then we have 4 consecutive roots, hence the designed

distance is five which means that we can decode at most two error. Let us construct F16

using α in the table below, table 2.1 of the powers of α.

With the help of table 2.1, we can now determine the partial syndromes for a received

codeword, y(x) = 1 + x5 + x7 + x8 + x9. We have

15

S1(y) = y(α) = 1 + α5 + α7 + α8 + α9

= 1 + α + α2 + 1 + α + α3 + 1 + α2 + α + α3

= 1 + α,

S2(y) = y(α2) = 1 + α10 + α14 + α16 + α18

= 1 + 1 + α + α2 + 1 + α3 + α + α3

= 1 + α2,

S3(y) = 1 + α15 + α21 + α24 + α27

= 1 + 1 + α6 + α9 + α12

= α2 + α3 + α + α3 + 1 + α + α2 + α3

= 1 + α3,

S4(y) = 1 + α20 + α28 + α32 + α36

= 1 + α5 + α13 + α2 + α6

= 1 + α + α2 + 1 + α2 + α3 + α2 + α2 + α3

= α.

Now let us construct the field using a root of the polynomial 1+x3+x4, call it γ. We have

that F16 = F2[x]�〈1 + x3 + x4〉 = {0, 1, γ, γ2, . . . , γ14}. We find the zeroes of the polynomials

1 + x+ x2 + x3 + x4 and 1 + x+ x4. The roots of 1 + x+ x4 are γ7, γ11, γ13, γ14, the ones of

1 + x+ x2 + x3 + x4 are γ3, γ12. We have 5 consecutive roots again, so δ = 5 and t = 2.

And we construct F16 in the table of powers of γ below and calculate the syndromes.

16

i γi

0 1

1 γ

2 γ2

3 γ3

4 1 + γ3

5 1 + γ + γ3

6 1 + γ + γ2 + γ3

7 1 + γ + γ2

8 γ + γ2 + γ3

9 1 + γ2

10 γ + γ3

11 1 + γ + γ3

12 1 + γ

13 γ + γ2

14 γ2 + γ3

Table 2.2: Powers of the root of 1 + x3 + x4.

Now we calculate the syndromes of y using table 2.2

S1(y) = 1 + γ5 + γ7 + γ8 + γ9

= 1 + 1 + γ + γ3 + 1 + γ + γ2 + γ + γ2 + γ3 + 1 + γ2,

= γ + γ2

S2(y) = 1 + γ10 + γ14 + γ16 + γ18

= 1 + γ2 + γ3,

S3(y) = 1 + 1 + γ6 + γ9 + γ12

= 1 + γ3,

S4(y) = 1 + γ5 + γ13 + γ2 + γ6

= 1 + γ + γ2.

17

Definition 2.2.12. The error-locator polynomial Λ(x) is

Λ(x) =
ν∏
i=1

(1− xXi)

= 1 + Λ1x+ . . .+ Λνx
ν .

We notice that the roots of Λ(x) are the inverses of the error locations. Define the

following matrix, where ν is the number of errors in a received word y,

Mν =

S1 S2 · · · Sν

S2 S3 · · · Sν+1

...
...

. . .
...

Sν Sν+1 · · · S2ν−1

 .

We will use this matrix to decode BCH codes. The following lemma gives us a characteriza-

tion of Mν .

Lemma 2.2.13. [3] Let C be a t-error decoding BCH code and suppose that we have ν errors

in a received word y.

• If ν ≤ t, then det(Mν) 6= 0;

• If ν > t, then det(Mν) = 0.

Decoding BCH codes is done in four steps. First of all we want to calculate the partial

syndromes Si = y(αi), i = b, b+ 1, . . . , b+ d− 2, of the word we receive.

The second step is finding the coefficients of Λ(x) by solving the following linear system

Mν [Λν ,Λν−1, . . . ,Λ1]
T = [−Sν+1,−Sν+2, . . . ,−S2ν]

T

where ν is the largest integer less than or equal to t such that det(Mν) 6= 0.

Next we find X−11 , X−12 , . . . , X−1ν , the zeroes of Λ(x), which are also the inverses of the

error locators X1 = αi1 , X2 = αi2 , . . . , Xν = αiν .

18

Our last step is to find the error magnitudes Y1, Y2, . . . , Yν by solving the following system

of linear equations

Y1X1 + · · ·+ YνXν = S1

Y1X
2
1 + · · ·+ YνX

2
ν = S2

· · ·

Y1X
2t
1 + · · ·+ YνX

2t
ν = S2t.

In our research, We will work exclusively with q = 2, that is BCH binary codes. Therefore

each Yi will be equal to one, which means that the last step of the decoding algorithm is not

necessary.

Example 2.2.14. Let us decode the BCH code 〈1 + x+ x2〉. The generator polynomial is

g(x) = 1+x+x2. We know that for this code we can decode up to one error. Let w be a root of

g(x) with w ∈ GF(23). Suppose that the received codeword is y = (1, 0, 1) then y(x) = 1+x2.

We need to calculate the partial syndromes for y. We have S1 = y(w) = 1 + w2 = w and

S2 = y(w2) = 1 + w. Let X be the error and Y be the error magnitude. Then since the

code is binary, Y = 1. Hence S1 = X, S2 = X2. Now let us find the coefficient of the error

locator polynomial Λ(x) = 1+Λ1x. Since X−1 is a zero of Λ(x), we have 1+Λ1X
−1 = 0. By

multiplying on both sides by X2, we get X2 + Λ1X = 0 which is S2 + Λ1S1 = 0. Therefore

Λ1 = S2

S1
= 1+w

w
and Λ(x) = 1 + 1+w

w
x. We note that Λ(1 + w) = 0, therefore the zero X−1

of Λ(x). The error location is i where X = wi, here X−1 = w + 1 so X = w. Hence the

codeword sent is (1, 1, 1).

2.2.2 Reed-Solomon Codes

Reed-Solomon codes are a subclass of BCH codes where the decoder alphabet is the

channel alphabet. They were developed by Irvin S. Reed and Gustave Solomon in 1960 in

[22] independently of the research of Bose Chaudhuri and Hocquenghem on BCH codes.

Definition 2.2.15. A q − ary Reed-Solomon code is a BCH code of length q − 1 that is

19

generated by the polynomial

g(x) = (x− αb)(x− αb−1) · · · (x− αb+δ−2)

where α is a primitive element of Fq and b ≥ 0, 2 ≤ δ ≤ q − 1.

The minimum distance of the code is δ = 2t + 1 which is independent of the choice of

α and b. Let us describe briefly a decoding algorithm, the Berlekamp-Massey algorithm,

for Reed-Solomon codes. First, we are going to define Xi = αji and Yi to be respectively

the error location and error magnitude, as we have already seen in the decoding of BCH

codes in Section 2.2.1. The first step is to calculate the partial syndromes. We define two

polynomials. The first one is the error locator polynomial, Λ(x), that we defined earlier.

The second polynomial is the error evaluator polynomial defined by

w(x) = Λ(x) +
s∑
i=1

xXiYi

s∏
j=1,j 6=i

(1−Xjx)

. Then we can find the roots of both polynomials.

2.2.3 Quasi-Cyclic Codes

Quasi-Cyclic codes are a generalization of cyclic codes. They were mostly studied to be

applied in the variations of cryptosystems like the McEliece cryptosystem or Niederreiter’s

cryptosystem. The main aspect that was interesting when looking at Quasi-Cyclic codes was

that it reduces considerably the key size which is an issue in both cryptosystems. But this

idea was replaced by alternant codes since the decoding of random Quasi-Cyclic codes can

be difficult.

In this section, let n ∈ N and let C be a code of length n over Fq. Let T : Fnq → Fnq
be the map that transforms a codeword to its left cyclic shift, i.e, T (c0, c1, . . . , cn−1) =

(c1, c2, . . . , cn−1, c0). We will write T l to represent the l-left cyclic shift.

Definition 2.2.16. Suppose that l is a positive integer that divides n. An l-Quasi-Cyclic

code over Fq of length n is a code of length n over Fq that is stable by T l.

20

Let l ∈ N, α ∈ Fql such that (1, α, . . . , αl−1) forms an Fq base of the vector space Fql .

Definition 2.2.17. The folding is the Fq-linear map,

Φ : Flq → Fql = Fq[α]

(a0, a1, . . . , al−1) 7→ a0 + a1α + . . .+ αl−1α
l−1.

Definition 2.2.18. The unfolding is the inverse Fq-linear map of Φ,

Φ−1 : Fql → Flq
a = a0 + a1α + . . .+ al−1α

l−1 7→ (a0, a1, . . . , al−1)

Now, using the maps defined above, we can create two types of codes. First, let m ∈ N
and f : X → Y be a map between two sets. Then define the mapping f×m as follows :

f×m : Xm → Y m

(x0, x1, . . . , xm−1) 7→ (f(x0), f(x1), . . . , f(xm−1)).

Definition 2.2.19. If n = ml, then the folded code of C is defined by Φ×m(C).

Definition 2.2.20. Let C ′ be a code over Fm
ql

. (Φ−1)×m(C ′) is called the unfolded code of

C ′.

Note that C is an l-Quasi-Cyclic code if and only if Φ×m(C) is cyclic.

2.2.4 Generalized Quasi-Cyclic Codes

Generalized Quasi-Cyclic codes were first introduced by Siap and Kulhan in [20]. We are

later going to use these codes in order to define Generalized Quasi-BCH codes. Let us give

the structure of generalized Quasi-cyclic codes. First, let q be a prime power and m1, . . . ,ml

be positive integers such that (mi, q) = 1 for each i.

Define Ri = Fq[x]�(xmi − 1), then R = R1 × · · · × Rl is an Fq[x] module, where the

operations are component-wise addition and scalar multiplication.

21

Definition 2.2.21. We call an Fq[x]-submodule of R a Generalized Quasi-Cyclic Code of

length (m1, . . . ,ml).

We notice that a generalized Quasi-Cyclic code of length m is a cyclic code, and if C has

length (m1, . . . ,ml) where all the mi have the same value, then C is a Quasi-Cyclic code of

length m.

The following Lemma will help us describe Generalized Quasi Cyclic Codes.

Lemma 2.2.22. ([20]) Let C be a Generalized Quasi-Cyclic code of length (m1,m2, . . . ,ml)

and generated by {g′1(x), g′2(x), . . . , g′s(x)} where g′i(x) = (gi1, gi2, . . . , gil), for all 1 ≤ i ≤ s.

Then, for all i, j with 1 ≤ i ≤ s, 1 ≤ j ≤ l, there exists fij ∈ Fq[x]�(xmj − 1) such that

gij(x) = fij(x)gj(x) where gj(x) ∈ Fq[x]�(xmj − 1) and gj(x) | (xmj − 1).

Corollary 2.2.23. ([20]) Let C be a 1-generator Generalized Quasi-Cyclic code. Then C is

generated by

f(x) = (f1(x)g1(x), f2(x)g2(x), . . . , fl(x)gl(x))

where fi(x), gi(x) ∈ Fq[x]�(xmi − 1) and gi(x) divides xmi − 1 for each 1 ≤ i ≤ l.

Theorem 2.2.24. ([20]) Let C be a 1-generator Generalized Quasi-Cyclic code with gener-

ator element f(x) as seen in Corollary 2.2.23. Let hi(x) = xmi−1
gi(x)

and (fi(x), gi(x)) = 1 for

each 1 ≤ i ≤ l. Then

(i) dim(C) = deg([h1(x), . . . , hl(x), xm1 − 1, . . . , xml − 1]), where [h1(x), . . . , hl(x), xm1 −
1, . . . , xml − 1] is the lowest common multiple between the polynomials over Fq.

(ii) d(C) ≥ min
i=1,...,l

{ai + 1}, where ai is the number of consecutive powers of the mi-th root

of unity that are zeroes of gi(x).

Let us give an example of a Generalized-Quasi-Cyclic code.

Example 2.2.25. Define C := 〈1 + x+ x2, 1 + x+ x3〉, C is an F2[x]-submodule of F2[x]�(x3 − 1)×
F2[x]�(x7 − 1) . C is a Generalized Quasi-Cyclic code of length (m1,m2) = (3, 7) and q = 2.

22

The codes generated by 1 + x + x2 and 1 + x + x3 are BCH codes over F2[x]�(x3 − 1)

and F2[x]�(x7 − 1) respectively. The check polynomials are h1(x) = 1 + x and h2(x) =

(1 +x)(1 +x2 +x3). The dimension of our code C is the degree of the lowest common multi-

ple of the two polynomials h1(x) and h2(x) which is 1 + x+ x2 + x4. Therefore dim(C) = 4.

What we are interested in is the minimum distance of C, to find it we can compute the Ham-

ming weight enumerator W (y) = 1 + y3 + 7y4 + 7y7, the minimum distance is the smallest

non zero exponent and therefore d(C) = 3.

2.2.5 Goppa Codes

Goppa Codes are a class of linear cyclic codes that were described in the 1970s. They

are used in the McEliece cryptosystem and Niederreiter cryptosystem. Unlike most cyclic

codes, there is an easy way to estimate the minimum distance, d, of a Goppa code since we

have the result d ≥ deg(g(x)) + 1, where g(x) is, as defined later in the next definition, the

Goppa polynomial.

Definition 2.2.26. Let g(x) be a polynomial over Fqm where q is some prime power, for

some positive integer m. Let L = {α1, α2, . . . , αn} be a subset of Fqm such that g(αi) 6= 0

for each i. The Goppa code Γ(L, g) is

Γ(L, g) := {c ∈ Fnq | Rc(x) ≡ 0 mod g(x)}

where Rc(x) =
n−1∑
i=0

ci
x− αi

. We call g(x) the Goppa polynomial.

Goppa is an interesting type of code because of its decoding algorithm. We are going to

give some preliminary definitions and then we’ll give a decoding algorithm for Goppa codes

described in [21].

Let Γ(L, g(x)) be a Goppa code of dimension k in Fq and where L = {α1, α2, . . . , αn}.
Suppose we receive y = (y1, y2, . . . , yn) with r errors, where r is a positive integer such that

2r − 1 ≤ d, the minimal distance. Then we know that y = (c1, c2, . . . , cn) + (e1, e2, . . . , en)

for some codeword c = (c1, c2, . . . , cn) and error vector e = (e1, e2, . . . , en). Now define

B := {i : 1 ≤ i ≤ n and ei 6= 0}, then B is the set of error location.

23

Definition 2.2.27. The syndrome of y is defined by

S(y) :=
n∑
i=1

yi
x− αi

=
n∑
i=1

ci
x− αi

+
∑
i∈B

ei
x− αi

=
∑
i∈B

ei
x− αi

(mod g(x)).

In order to be able to find what the error vector e is, we need to define two polynomials.

Definition 2.2.28. The error locator polynomial is

σ(x) =
∏
i∈B

(x− αi).

The error evaluator polynomial is defined by∑
i∈B

ei
∏
j∈B
j 6=i

(x− αi).

Then the decoding algorithm is the following. We first compute the syndrome S(y) of

y. The next step is to compute σ(x)S(y) ≡ w(x) (mod g(x)). If we are working with a

binary Goppa code, then w(x) is the first derivative of σ(x). Then we want to determine

where the errors are located, in other words, determine the set B. Next, we find the value

of ei for each i ∈ B by calculating ei = w(αi)
σ′(αi)

. If the code is binary then ei = 1. We get the

error vector e = (e1, e2, . . . , en) where ej 6= 0 if j 6∈ B and we can compute c = y − e.

24

Chapter 3

Generalized Quasi-BCH Codes and

Their Decoding

In this chapter, we will combine the notion of a BCH code with Generalized Quasi-Cyclic

codes. Generalized Quasi-BCH codes have been considered in the literature by M. Barbier,

C. Chabot and G. Quintin in [5]. Their approach was based on looking at Quasi-BCH

codes and generalizing them. In [5], they described a decoding algorithm that involved

matrices with coefficients in Fq[x]�(xn − 1). Our goal was to define Generalized Quasi-BCH

by taking multiple BCH codes and define Generalized BCH-codes by using the properties of

Generalized Quasi-Cyclic codes. We give a new definition of Generalized Quasi-BCH codes

and an efficient decoding algorithm.

Definition 3.0.1. A code C is a Generalized Quasi-BCH code if it it generated by one or

more BCH codes of different lengths, in the same way as generalized quasicyclic codes were

defined above.

Example 3.0.2. Let us characterize the Generalized Quasi-BCH code

C :=
〈
1 + x+ x2, 1 + x+ x3

〉
.

C is an F2[x] submodule of F2[x]�x3 − 1×
F2[x]�x7 − 1 We get the codewords by multiplying

by a polynomial p(x), the codeword would be

(p(x)(1 + x+ x2), p(x)(1 + x+ x3)).

25

Define g1(x) = 1 + x + x2 and g2(x) = 1 + x + x3. Then h1(x) = x3−1
g1(x)

= 1 + x and

h2(x) = x7−1
g2(x)

= (1 + x)(1 + x2 + x3).

Let p1(x), p2(x) be polynomials such that deg(p1(x)), deg(p2(x)) < 4 and

p1(x)g2(x) = p2(x)g2(x), then we have (p1(x)− p2(x))g2(x) = 0. The degree of p1(x)− p2(x)

is less than 4 and deg(g2(x)) = 3, therefore we know that the degree of (p1(x)− p2(x))g2(x)

is less than 7. Then it can only be equal to zero if p1(x) = p2(x). Therefore, each polynomial

of degree less than 4 will give us a unique codeword.

Now suppose that p(x) is a polynomial in 〈1 + x+ x3〉 such that deg(p(x)) ≥ 4 then

we can find q(x), r(x) such that p(x) = h2(x)q(x) + r(x) where deg(r(x)) < 4 since we

have deg(h2(x)) = 4. Then, by multiplying on both sides by g2(x), we get p(x)g2(x) =

h2(x)q(x)g2(x) + r(x)g2(x) = r(x)g2(x) since h2(x)g2(x) = 0. We can see that when we

multiply g2(x) by a polynomial of degree greater than or equal to 4, it can be expressed as

the product of g2(x) and a polynomial of degree less than 4. Hence we can write〈
1 + x+ x3

〉
= {p(x)(1 + x+ x3) | deg(p(x)) < 4}.

Now looking at 〈1+x+x2〉, multiplying by x we get x(1+x+x2) = x+x2 +x3 = 1+x+x2,

therefore multiplying by any power of x will give us the same codeword. Hence when we

multiply g1(x) by some p(x), only the constant will influence the new codeword we are

getting. Therefore if p(x) = 0 +a1x+a2x
2 +a3x

3, the codeword will be (0, p(x)(1 +x+x3))

and if p(x) = 1 + a1x+ a2x
2 + a3x

3, we will get (1 + x+ x2, p(x)(1 + x+ x3)). Now we can

characterize our Generalized BCH code by giving its generating matrix
1110100111

1110011101

0000101100

0001001110

Now let us decode this Generalized Quasi-BCH code. Let α be a root of the polynomial

1 + x + x3. The minimum distance of this code is 3 = 2t + 1, therefore we can only

decode up to one error. We want to send the codeword (0111001), we add one error and

get y = (0011001) which is y(x) = x2 + x3 + x6. Now let us decode y to get the original

codeword. We need to calculate the partial syndromes Si. First, we use α to generate F8.

26

i αi

0 1

1 α

2 α2

3 α + 1

4 α2 + α

5 α2 + α + 1

6 α2 + 1

Table 3.1: Powers of the root of 1 + x+ x3.

We have

S1 = y(α) = α2 + α3 + α6

= α2 + α + 1 + α2 + 1

= α

S2 = y(α2) = α4 + α6 + α12

= α2 + α + α2 + 1 + α5

= α + 1 + α2 + α + 1

= α2.

Since we can only have one error, the error locating polynomial is Λ(x) = 1−xX = 1 + Λ1x.

We know thatX−1 is the zero of Λ(x) so 1−Λ1X
−1 = 0. We get the equationX2−Λ1X = 0 by

multiplying by X2 = S2. Now we have S2−Λ1S1 = 0, which is Λ1 = S2

S1
= α2

α
= α. Therefore

Λ(x) = 1 + αx. The last step is to find the zero X−1 for this polynomial, 1 + αX−1 = 0

implies αX−1 = 1, and so X−1 = α6. Taking the inverse, X = α, therefore the sent code is

(0111001).

In order to decode these Generalized Quasi-BCH codes, we are going to look at each

block separately. Instead of taking the whole codeword that we need to decode, we take

each corresponding block in the codeword and use the decoding algorithm described in

Section 2.2.1 on each of these.

27

Chapter 4

Designing Code-Based Cryptosystems

Using Generalized Quasi-BCH Codes

We are designing a cryptosystem the same way as McEliece. Usually, cyclic codes have

blocks of the same length when generalized codes have blocks of different lengths. We are

designing Generalized Quasi-BCH codes so that we have BCH codes with multiple blocks of

different lengths. We encode words by transforming them into a tuple of polynomials that are

each in a different block, which have potentially different lengths. Now knowing the length

and the generator polynomial for the BCH code of each block, we can add an error vector

by selecting how many errors will be in each of them since we know their error decoding

capability. We send the modified word to the receiver for them to decode it. Decoding

Generalized Quasi-BCH codes requires to use the decoding algorithm described in section

2.2.1. That is, to calculate, for each block, the syndromes of the received word to then

find the coefficients of the error locating polynomial. Once we find these coefficients, we

determine the zeros of the polynomial to finally find the positions of the errors. Therefore

we can find the original polynomial for each block and hence the original codeword.

We will give two examples of Generalized Quasi-BCH codes to understand the structure

of the cryptosystem.

Example 4.0.1. Let us give an example of a Generalized BCH code with three blocks,

each of different lengths. Let C = 〈1 + x + x2, 1 + x + x3, 1 + x5 + x10〉 which is an F2[x]-

submodule of F2[x]�〈x3 − 1〉×
F2[x]�〈x7 − 1〉×

F2[x]�〈x15− 1〉 we want to describe the code

28

and use the decoding algorithm that we described. Since by the example above we know

that the code generated by 1 + x+ x2 will only be affected by the constant coefficient since

multiplying by a power of x greater than or equal to one gives us the same polynomial. Let

g1(x) = 1+x+x2, g2(x) = 1+x+x3, and g3(x) = 1+x5 +x10, define p1(x), p2(x) such that

deg(p1(x)), deg(p2(x)) < 5 and p1(x)g3(x) = p2(x)g3(x), then (p1(x)−p2(x))g3(x) = 0. Since

deg(g3(x)) = 10 and deg(p1(x) − p2(x)) < 5, deg((p1(x) − p2(x))g3(x)) < 15 and can only

be equal to zero if p1(x) = p2(x). Now let p(x) be a polynomial such that deg(p(x)) ≥ 5, by

the division algorithm, there exist q(x) and r(x) such that p(x) = h3(x)q(x) + r(x) where

deg(r(x)) < 5. By multiplying on both sides by g3(x) we obtain p(x)g3(x) = h3(x)q(x)g3(x)+

r(x)g3(x) = r(x)g3(x). Therefore multiplying g3(x) by a polynomial of degree greater than

or equal to five would result in multiplying by a polynomial of degree less than five. Hence

we have 〈x10 + x5 + 1〉 = {p(x)(1 + x5 + x10) | deg(p(x)) < 5}.
To decode this Generalized BCH code, we are going to apply the BCH algorithm described

in section 2.2.1 to each block. Let us decode this generalized BCH code. First we find a word

in our code C, we multiply our generator polynomials by a polynomial p(x) = 1 + x3 + x4,

we get

(1 + x3 + x4)(1 + x+ x2) = 1 + x+ x2

(1 + x3 + x4)(1 + x+ x3) = x+ x5 + x6

(1 + x3 + x4)(1 + x5 + x10) = 1 + x3 + x4 + x5 + x8 + x9 + x10 + x13 + x14

Combining all of them we get (1+x3+x4)(1+x+x2, 1+x+x3, 1+x5+x10) = (1+x+x2, x+x5+

x6, 1+x3+x4+x5+x8+x9+x10+x13+x14) which is coded by (1110100011100111001110011)

where the first three coordinates represent the first block of the code, the next seven, the

second block and the last fourteen, the third and last block. Since every block corresponds

to its own BCH code and we saw in earlier examples their error decoding capability, let us

add an error to each block. We receive the word y = (1010110011100111000110011) which

translate to

y(x) := (y1(x), y2(x), y3(x)) = (1+x2, x+x2 +x5 +x6, 1+x3 +x4 +x5 +x9 +x10 +x13 +x14).

29

We can see that we added errors in the second, sixth and nineteenth coordinates. Now let

us use the decoding algorithm that we described in section 2.2.1 on each block to find where

the errors are. Let α be a root of 1 + x + x2, β be a root of 1 + x + x3 and γ be a root of

1 + x+ x4. Let us calculate the syndromes of y using Table 4.3. We have

S1(y) = (S1,1, S1,2, S1,3) = (y1(α), y2(β), y3(γ)) = (1 + α2, β + β2 + β5 + β6, 1 + γ3 + γ5

+ γ9 + γ10 + γ13 + γ14)

= (α, β2, 1 + γ2),

S2(y) = (y1(α
2), y2(β

2), y3(γ
2)) = (1 + α4, β2 + β4 + β10 + β12, 1 + γ6 + γ10

+ γ18 + γ20 + γ26 + γ28),

= (1 + α, β2 + β4 + β3 + β5, 1 + γ6 + γ10

+ γ3 + γ5 + γ11 + γ13)

= (1 + α, β + β2, γ).

Let us find the error locating polynomial. Since we can only decode one error for

each block, the error locating polynomial is Λ(x) = (Λ1(x),Λ2(x),Λ3(x)) = (1 + Λ1x, 1 +

Λ2x, 1 + Λ3x). Now we want to find the coefficients Λi for each i = 1, 2, 3. Since X−1 =

(X−11 , X−12 , X−13) is the zero of Λ(x), (1 + Λ1X
−1
1 , 1 + Λ2X

−1
2 , 1 + Λ3X

−1
3) = (0, 0, 0). Now by

multiplying by S2 = X2 on both sides we get (S2,1 − Λ1S1,1, S2,2 − Λ2S1,2, S2,3 − Λ3S1,3) =

(0, 0, 0), which means that

Λ1 =
S2,1

S1,1

=
1 + α

α
= α,

Λ2 =
S2,2

S1,2

=
β + β2

β2
= β2,

Λ3 =
S2,3

S1,3

=
γ

1 + γ2
= γ8.

Therefore the error locating polynomial is Λ(x) = (1 + αx, 1 + β2x, 1 + γ8x). Thus X1 =

α,X2 = β2, X3 = γ8. Hence the locations of the errors, which are the powers plus one of

α, β and γ in X1, X2 and X3 respectively, are in the second coordinate for the first, the third

coordinate for second block and in the ninth one for the last block.

30

Example 4.0.2. Let us look at the Generalized BCH code C = 〈1 +x+x2 +x5 +x9 +x11 +

x13 +x14 +x15 +x16 +x18 +x19 +x21 +x24 +x25, 1 +x+x6 +x9 +x10 +x12 +x16 +x17 +x18 +

x22 + x24 + x26 + x29 + x34 + x39 + x40 + x42 + x43 + x44 + x46 + x48 + x49 + x50〉 of length 94

and dimension 24. We find a codeword in C by multiplying our generators polynomial by a

random polynomial, we pick the polynomial p(x) = 1 + x2 + x5 + x8 + x10 + x15. We get

p(x)g1(x) = 1 + x3 + x5 + x6 + x9 + x10 + x11 + x12 + x13 + x17 + x18 + x20 + x21

+ x22 +24 +x26,

p(x)g2(x) = x3 + x5 + x11 + x14 + x17 + x18 + x20 + x22 + x23 + x27 + x30 + x31

+ x32 + x33 + x40 + x42 + x43 + x44 + x51 + x52 + x58 + x60 + x61.

We know we can correct seven errors in the first block of the code, and fifteen in the second.

Say the word with errors that we receive is y(x) = (y1(x), y2(x)) where

y1(x) =1 + x+ x3 + x6 + x10 + x11 + x12 + x13 + x15 + x17 + x18 + x21 + x22 + x24 + x26

+ x27 + x29

y2(x) =1 + x+ x3 + x5 + x7 + x8 + x11 + x12 + x14 + x15 + x17 + x18 + x19 + x20 + x22 + x23

+ x24 + x27 + x31 + x32 + x33 + x35 + x39 + x40 + x42 + x44 + x52 + x55 + x60 + x61

Let α and β be roots of 1 + x2 + x5 and 1 + x+ x3 + x4 + x6, respectively. We use α and β

to construct F32 and F64 respectively. The tables showing the constructions can be found at

the end of this chapter. Now we calculate the syndromes of y.

31

S1(y) = (α2 + α3, β2 + β5) = (α20, β15)

S2(y) = (α + α3 + α4, 1 + β5) = (α9, β30)

S3(y) = (1 + α + α2 + α4, β + β2 + β5) = (α26, β17)

S4(y) = (1 + α, β4 + β5) = (α18, β60)

S5(y) = (α + α2 + α4, 1 + β + β2 + β3) = (α28, β42)

S6(y) = (α3 + α4, 1 + β2 + β5) = (α21, β34)

S7(y) = (α3, 1 + β2) = (α3, β49)

S8(y) = (1 + α2, β + β2) = (α5, β57)

S9(y) = (α2 + α4, 1) = (α7, β0)

S10(y) = (1 + α3 + α4, β + β2 + β3) = (α25, β21)

S11(y) = (1 + α + α4, β2) = (α17, β2)

S12(y) = (1 + α + α2, β5) = (α11, β5)

S13(y) = (α + α3, β + β2 + β3 + β4 + β5) = (α6, β38)

S14(y) = (α + α3, 0) = (α6, 0)

S15(y) = (α + α2 + α4, β + β5) = (α28, β36)

S16(y) = (1 + α4, β2 + β4) = (α10, β51)

S17(y) = (α2 + α3 + α4, 1 + β + β2 + β3) = (α13, β42)

S18(y) = (1 + α2 + α3 + α4, 1) = (α14, β0)

S19(y) = (1 + α + α4, β + β3 + β5) = (α17, β41)

S20(y) = (α + α2, 1 + β + β2 + β3) = (α19, β42)

S21(y) = (α + α2 + α3 + α4, 1 + β + β2 + β3) = (α24, β42)

S22(y) = (α3, β4) = (α3, β4)

S23(y) = (1 + α2 + α3 + α4, 1 + β3 + β4 + β5) = (α14, β11)

S24(y) = (1 + α2 + α4, 1 + β4 + β5) = (α22, β10)

32

S25(y) = (α + α2 + α3 + α4, 1 + β + β4) = (α24, β16)

S26(y) = (α + α2 + α3, 1 + β3) = (α12, β13)

S27(y) = (α2 + α4, 1 + β + β2 + β4) = (α7, β18)

S28(y) = (α + α2 + α3, 0) = (α12, 0)

S29(y) = (α + α2, β2 + β3 + β4 + β5) = (α19, β44)

S30(y) = (1 + α3 + α4, 1 + β2 + β4 + β5) = (α25, β9).

The error locating polynomial is Λ(x) = 1 + Λ1x + Λ2x
2 + · · · + Λ15x

15.Our next step is to

find what the coefficients of this polynomial are. Since we know we have two blocks, we are

going to find the coefficients for each of the blocks. For the first block, we are going to solve

the following system of equations,
S1 S2 · · · S7

S2 S3 · · · S8

...
...

. . .
...

S7 S8 · · · S13

Λ7

Λ6

...

Λ1

 =

S8

S9

...

S14

 .

We can use the syndromes we calculated to get the system,

α20 α9 α26 α18 α28 α21 α3

α9 α26 α18 α28 α21 α3 α5

α26 α18 α28 α21 α3 α5 α7

α18 α28 α21 α3 α5 α7 α25

α28 α21 α3 α5 α7 α25 α17

α21 α3 α5 α7 α25 α17 α11

α3 α5 α7 α25 α17 α11 α6

Λ7

Λ6

Λ5

Λ4

Λ3

Λ2

Λ1

=

α5

α7

α25

α17

α11

α6

α6

.

33

Since we do not have more errors than the error decoding capability of the code, the

syndrome matrix is invertible. We find its inverse

α9 α24 α13 α25 α3 α6 α11

α24 α5 α26 1 α4 1 α19

α13 α26 α15 α3 α6 α11 α25

α25 1 α3 α25 α α8 α17

α3 α4 α6 α α22 α29 α6

α6 1 α11 α8 α29 α17 α7

α11 α19 α25 α17 α6 α7 α18

.

We solve the following system

Λ7

Λ6

Λ5

Λ4

Λ3

Λ2

Λ1

=

α9 α24 α13 α25 α3 α6 α11

α24 α5 α26 1 α4 1 α19

α13 α26 α15 α3 α6 α11 α25

α25 1 α3 α25 α α8 α17

α3 α4 α6 α α22 α29 α6

α6 1 α11 α8 α29 α17 α7

α11 α19 α25 α17 α6 α7 α18

α5

α7

α25

α17

α11

α6

α6

.

and then we find the zeroes of our error locating functions which are the inverses of the error

positions.

Then to find the error locating polynomial for the second block, we solve the following

system of equations,
S1 S2 · · · S15

S2 S3 · · · S16

...
...

. . .
...

S15 S16 · · · S29

Λ15

Λ14

...

Λ1

 =

S16

S17

...

S30

 ,

34

which is equivalent to

β15 β30 β17 β60 β42 β34 β49 β57 1 β21 β2 β5 β38 0 β36

β30 β17 β60 β42 β34 β49 β57 1 β21 β2 β5 β38 0 β36 β51

β17 β60 β42 β34 β49 β57 1 β21 β2 β5 β38 0 β36 β51 β42

β60 β42 β34 β49 β57 1 β21 β2 β5 β38 0 β36 β51 β42 1

β42 β34 β49 β57 1 β21 β2 β5 β38 0 β36 β51 β42 1 β41

β34 β49 β57 1 β21 β2 β5 β38 0 β36 β51 β42 1 β41 β42

β49 β57 1 β21 β2 β5 β38 0 β36 β51 β42 1 β41 β42 β42

β57 1 β21 β2 β5 β38 0 β36 β51 β42 1 β41 β42 β42 β4

1 β21 β2 β5 β38 0 β36 β51 β42 1 β41 β42 β42 β4 β11

β21 β2 β5 β38 0 β36 β51 β42 1 β41 β42 β42 β4 β11 β10

β2 β5 β38 0 β36 β51 β42 1 β41 β42 β42 β4 β11 β10 β16

β5 β38 0 β36 β51 β42 1 β41 β42 β42 β4 β11 β10 β16 β13

β38 0 β36 β51 β42 1 β41 β42 β42 β4 β11 β10 β16 β13 β18

0 β36 β51 β42 1 β41 β42 β42 β4 β11 β10 β16 β13 β18 0

β36 β51 β42 1 β41 β42 β42 β4 β11 β10 β16 β13 β18 0 β44

Λ15

Λ14

Λ13

Λ12

Λ11

Λ10

Λ9

Λ8

Λ7

Λ6

Λ5

Λ4

Λ3

Λ2

Λ1

=

β51

β42

1

β41

β42

β42

β4

β11

β10

β16

β13

β18

0

β44

β9

.

This cryptosystem has a few properties that are making it secure. First of all, the code has

a compact description, which means that the key size will not be too large. This characteristic

is one the prerequisites to a fully secure cryptosystem since having a large key size makes the

encryption and decryption more difficult because of the length that the calculation requires.

Furthermore, it is complicated for someone to find the structure of a word that was sent

because of these blocks of different lengths. The structure of the Generalized Quasi-BCH

codes is hidden well enough so that it is secure. Finally we notice in Example 4.0.2 that

there is a possibility of decoding more errors with Generalized Quasi-BCH codes depending

on where they are situated than a regular linear code. Indeed, we have seen that with the

code of Example 4.0.2, we can correct up to 22 errors. If we look at all known linear codes of

length 94 with dimension 24, which are the same parameters than our code, the maximum

number of errors we can correct is 16 errors.

35

i αi

0 1
1 α
2 α+ 1

i βi

0 1
1 β
2 β2

3 1 + β
4 β + β2

5 1 + β + β2

6 1 + β2

i γi

0 1
1 γ
2 γ2

3 γ3

4 1 + γ
5 γ + γ2

6 γ2 + γ3

7 1 + γ + γ3

8 1 + γ2

9 γ + γ3

10 1 + γ + γ2

11 γ + γ2 + γ3

12 1 + γ + γ2 + γ3

13 1 + γ2 + γ3

14 1 + γ3

Table 4.1: Powers of the roots of 1 + x+ x2, 1 + x+ x3, and 1 + x+ x4 respectively.

i αi

0 1
1 α
2 α2

3 α3

4 α4

5 1 + α2

6 α + α3

7 α2 + α4

8 1 + α2 + α3

9 α + α3 + α4

10 1 + α4

11 1 + α + α2

12 α + α2 + α3

13 α2 + α3 + α4

14 1 + α2 + α3 + α4

15 1 + α + α2 + α3 + α4

16 1 + α + α3 + α4

17 1 + α + α4

18 1 + α
19 α + α2

20 α2 + α3

21 α3 + α4

22 1 + α2 + α4

23 1 + α + α2 + α3

24 α + α2 + α3 + α4

25 1 + α3 + α4

26 1 + α + α2 + α4

27 1 + α + α3

28 α + α2 + α4

29 1 + α3

30 α + α4

Table 4.2: Powers of the root α of 1 + x2 + x5.

36

i βi

0 1
1 β
2 β2

3 β3

4 β4

5 β5

6 1 + β + β3 + β4

7 β + β2 + β4 + β5

8 1 + β + β2 + β4 + β5

9 1 + β2 + β4 + β5

10 1 + β4 + β5

11 1 + β3 + β4 + β5

12 1 + β3 + β5

13 1 + β3

14 β + β4

15 β2 + β5

16 1 + β + β4

17 β + β2 + β5

18 1 + β + β2 + β4

19 β + β2 + β3 + β5

20 1 + β + β2

21 β + β2 + β3

22 β2 + β3 + β4

23 β3 + β4 + β5

24 1 + β + β3 + β5

25 1 + β2 + β3

26 β + β3 + β4

27 β2 + β4 + β5

28 1 + β + β4 + β5

29 1 + β2 + β3 + β4 + β5

30 1 + β5

31 1 + β3 + β4

32 β + β4 + β5

33 1 + β + β2 + β3 + β4 + β5

34 1 + β2 + β5

35 1 + β4

36 β + β5

37 1 + β + β2 + β3 + β4

38 β + β2 + β3 + β4 + β5

39 1 + β + β2 + β5

40 1 + β2 + β4

41 β + β3 + β5

42 1 + β + β2 + β3

43 β + β2 + β3 + β4

44 β2 + β3 + β4 + β5

45 1 + β + β5

46 1 + β2 + β3 + β4

47 β + β3 + β4 + β5

48 1 + β + β2 + β3 + β5

49 1 + β2

50 β + β3

51 β2 + β4

52 β3 + β5

53 1 + β + β3

54 β + β2 + β4

55 β2 + β3 + β5

56 1 + β
57 β + β2

58 β2 + β3

59 β3 + β4

60 β4 + β5

61 1 + β + β3 + β4 + β5

62 1 + β2 + β3 + β5

Table 4.3: Powers of the root β of 1 + x+ x3 + x4 + x6.

37

Chapter 5

Conclusion

We started to give some necessary definitions and descriptions, in Chapter 2, in order

to understand the context of the research. Then, in Chapter 3, we described the family of

codes we are working on, Generalized Quasi-BCH codes and gave some examples on how to

define and decode these codes. In the last chapter, we analyzed these codes and gave some

interesting properties that make it an attractive type of codes.

We described a type of codes that are a generalization of BCH codes. These latter codes

have been studied for years by mathematicians and have multiple interesting properties,

including having an efficient decoding algorithm which makes our code possible to decode

efficiently thanks to the same algorithm but generalized. Since we have not used any of the

most common problems that are solvable using quantum computers, it makes Generalized

Quasi-BCH codes a good candidate for post-quantum cryptography.

We have noticed in Example 4.0.2 that our code had a compelling property. Depending

where the errors were situated, we could decode more errors than any linear code with the

same parameters. Therefore, if someone intercepted the transmission, they would not be

able to decode the errors and hence making it impossible to find the message sent. Since the

structure of the code is hidden, nobody can know that we have blocks of different lengths,

without the information that we are using Generalized Quasi-BCH codes, it is unachievable

to distinguish this code from a usual linear code.

Now we have some questions unanswered that we need to work on in the future to improve

38

this code. Could we use scramble matrices in order to hide even more the structure of our

code ? Could we generalize these codes like the constacyclic codes, twisted codes, quasi

twisted codes ?

39

Appendix A

Mathematica Codes

The Mathematica code below is the one used to make the tables and calculate the syn-

dromes in Example 2.2.11.

Table[{PolynomialMod[x^i, {2, 1 + x + x^4}], i}, {i, 0, 14}]

Table[{PolynomialMod[1 + x^(5i) + x^(7i) + x^(8i) + x^(9i),

{2, 1 + x + x^4}], i}, {i, 1, 4}]

Table[{PolynomialMod[x^i, {2, 1 + x^3 + x^4}], i}, {i, 0, 14}]

Table[{PolynomialMod[1 + x^(5i) + x^(7i) + x^(8i) + x^(9i),

{2, 1 + x^3 + x^4}], i}, {i, 1, 4}]

The Mathematica code below is the code used to make the table and calculate the

syndromes in Example 3.0.2.

Table[{PolynomialMod[x^i, {2, 1 + x + x^3}], i}, {i, 0, 6}]

Table[{PolynomialMod[x^(2i) + x^(3i) + x^(6i),

{2, 1 + x + x^3}], i}, {i, 1, 2}]

The Mathematica code below is the code that was used to make the tables and to calculate

the syndromes in Example 4.0.1.

Table[{PolynomialMod[x^i, {2, 1 + x + x^2}], i}, {i, 0, 2}]

Table[{PolynomialMod[x^i, {2, 1 + x + x^3}], i}, {i, 0, 6}]

Table[{PolynomialMod[x^i, {2, 1 + x + x^4}], i}, {i, 0, 14}]

40

Table[{PolynomialMod[1 + x^(2i),{2, 1 + x + x^2}], i}, {i, 1, 2}]

Table[{PolynomialMod[x + x^(2i) + x^(5i) + x^(6i), {2, 1 + x + x^3}],

i},{i, 1, 2}]

Table[{PolynomialMod[1 + x^(3i) + x^(4i) + x^(5i) + x^(9i) + x^(10i)

+ x^(13i) + x^(14i),{2, 1 + x + x^3}], i}, {i, 1, 2}]

The Mathematica code below is the code used to make the tables, calculate the syndromes

and find the inverse of the matrix in Example 4.0.2.

Table[{PolynomialMod[x^i, {2, 1 + x^2 + x^5}], i}, {i, 0, 30}]

Table[{PolynomialMod[x^i, {2, 1 + x + x^3 + x^4 + x^6}],

i}, {i, 0, 62}]

Table[{PolynomialMod[1 + x^i + x^(3i) + x^(6i) + x^(10i) + x^(11i)

+ x^(12i) + x^(13i) + x^(15i) + x^(17i) + x^(18i) + x^(21i)

+ x^(22i)+ x^(24i) + x^(26i) + x^(27i) + x^(29i), {2, 1 + x^2 + x^5}],

i},{i, 0, 30}]

Table[{PolynomialMod[1 + x^i + x^(3i) + x^(5i) + x^(7i) + x^(8i) + x^(11i)

+ x^(12i) + x^(14i) + x^(15i) + x^(17i) + x^(18i) + x^(19i) + x^(20i)

+ x^(22i) + x^(23i)+ x^(24i) + x^(27i) + x^(31i) + x^(32i) + x^(33i)

+ x^(35i) + x^(39i) + x^(40i) + x^(42i) + x^(44i) + x^(52i) + x^(55i)

+ x^(60i) + x^(61i)), {2, 1 + x + x^3 + x^4 + x^6}], i}, {i, 0, 30}]

<< FiniteFields‘

SetFieldFormat[GF[2, 5], FormatType -> FunctionOfCoefficients[f32]]

ffmatrix = {{f32[0, 0, 1, 1], f32[0, 1, 0, 1, 1], f32[1, 1, 1, 0, 1],

f32[1, 1], f32[0, 1, 1, 0, 1], f32[0, 0, 0, 1, 1], f32[0, 0, 0, 1]},

{f32[0, 1, 0, 1, 1], f32[1, 1, 1, 0, 1], f32[1, 1],

f32[0, 1, 1, 0, 1], f32[0, 0, 0, 1, 1], f32[0, 0, 0, 1],f32[1, 0, 1]},

{f32[1, 1, 1, 0, 1], f32[1, 1, 0, 0, 0], f32[0, 1, 1, 0, 1],

f32[0, 0, 0, 1, 1], f32[0, 0, 0, 1, 0], f32[1, 0, 1, 0, 0],

f32[0, 0, 1, 0, 1]},

{f32[1, 1, 0, 0, 0], f32[0, 1, 1, 0, 1], f32[0, 0, 0, 1, 1],

41

f32[0, 0, 0, 1, 0], f32[1, 0, 1, 0, 0], f32[0, 0, 1, 0, 1],

f32[1, 0, 0, 1, 1]},

{f32[0, 1, 1, 0, 1], f32[0, 0, 0, 1, 1], f32[0, 0, 0, 1, 0],

f32[1, 0, 1, 0, 0], f32[0, 0, 1, 0, 1], f32[1, 0, 0, 1, 1],

f32[1, 1, 0, 0, 1]},

{f32[0, 0, 0, 1, 1], f32[0, 0, 0, 1, 0], f32[1, 0, 1, 0, 0],

f32[0, 0, 1, 0, 1], f32[1, 0, 0, 1, 1], f32[1, 1, 0, 0, 1],

f32[1, 1, 1]},

{f32[0, 0, 0, 1, 0], f32[1, 0, 1, 0, 0], f32[0, 0, 1, 0, 1],

f32[1, 0, 0, 1, 1], f32[1, 1, 0, 0, 1], f32[1, 1, 1, 0, 0],

f32[0, 1, 0, 1]}}

Inverse[ffmatrix]

42

Bibliography

[1] BCH codes. In F J MacWilliams and N J A Sloane, editors, The Theory of Error-

Correcting Codes, volume 16 of North-Holland Mathematical Library, pages 257–293.

Elsevier, 1977.

[2] Cyclic codes. In F J MacWilliams and N J A Sloane, editors, The Theory of Error-

Correcting Codes, volume 16 of North-Holland Mathematical Library, pages 188–215.

Elsevier, 1977.

[3] Linear codes. In F J MacWilliams and N J A Sloane, editors, The Theory of Error-

Correcting Codes, volume 16 of North-Holland Mathematical Library, pages 1–37. Else-

vier, 1977.

[4] Marco Baldi and Franco Chiaraluce. Cryptanalysis of a new instance of McEliece crypto

system based on QC-LDPC codes. In IEEE International Symposium on Information

Theory - Proceedings, pages 2591–2595, jun 2007.

[5] M. Barbier, C. Chabot, and G. Quintin. On quasi-cyclic codes as a generalization of

cyclic codes. Finite Fields and Their Applications, 18(5):904 – 919, 2012.

[6] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding Random

Binary Linear Codes in 2 n/20: How 1+1=0 Improves Information Set Decoding. In

David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EURO-

CRYPT 2012, pages 520–536, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[7] E Berlekamp. On decoding binary Bose-Chadhuri- Hocquenghem codes. IEEE Trans-

actions on Information Theory, 11(4):577–579, oct 1965.

43

[8] E. Berlekamp. Goppa codes. IEEE Transactions on Information Theory, 19(5):590–592,

sep 1973.

[9] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of certain

coding problems (Corresp.). IEEE Transactions on Information Theory, 24(3):384–386,

may 1978.

[10] R.C. Bose and D.K. Ray-Chaudhuri. On a class of error correcting binary group codes.

Information and Control, 3(1):68 – 79, 1960.

[11] Marcel J E Golay. Notes on digital coding. Proc. IEEE, 37:657, 1949.

[12] Valerii Denisovich Goppa. A new class of linear correcting codes. Problemy Peredachi

Informatsii, 6(3):24–30, 1970.

[13] Richard Wesley Hamming. Error-detecting and error-correcting codes. Bell System

Technical Journal, 29(2):147–160, 1950.

[14] Alexis Hocquenghem. Codes correcteurs derreurs. Chiffres, 2(2):147–56, 1959.

[15] San Ling and Chaoping Xing. Coding theory: a first course. Cambridge University

Press, 2004.

[16] Robert J McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory.

Technical Report 44, Jet Propulsion Lab., CA, 1978.

[17] C. Monico, J. Rosenthal, and A. Shokrollahi. Using low density parity check codes in

the McEliece cryptosystem. In 2000 IEEE International Symposium on Information

Theory (Cat. No.00CH37060), page 215. IEEE, 2000.

[18] N Patterson. The algebraic decoding of Goppa codes. IEEE Transactions on Informa-

tion Theory, 21(2):203–207, mar 1975.

[19] C E Shannon. A Mathematical Theory of Communication. Bell Systems Technical

Journal, 27:623–656, 1948.

44

[20] Irfan Siap and Nilgun Kulhan. The structure of generalized quasi cyclic codes. Appl.

Math. E-Notes, 5:24–30, 2005.

[21] Harshdeep Singh. Code based cryptography: Classic mceliece, 2019.

[22] G. Solomon and I Reed. Polynomial codes over certain finite fields. Journal of the

Society for Industrial and Applied Mathematics, (8):300–304, 1960.

[23] A Vardy. The Intractability of computing the minimum distance of a code. IEEE

Transactions on Information Theory, (43):1757–1766, 1997.

45

