Prime Numbers

DR. RACHEL NEVILLE HIGH SCHOOL MATH DAY NOVEMBER 2, 2022

What is a prime number?

A **prime number** is a number that can only be divided exactly by 1 and itself.

Examples:

7 is prime 12 is not prime: 12=3*2*2

4219 is prime

15,233 is prime

523,147 is not prime: 523,147=967*541

- Prime numbers are the building blocks of whole numbers:
 - Every single number can be written uniquely as a product of prime numbers.
- There are beautiful mathematical patterns and properties that only hold for prime numbers.
- ► They remain mysterious.
 - ► Example: Distribution of Primes:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, ...

Why do we care about prime numbers?

- Prime numbers keep your private information safe online (RSA Encryption)
 - Private information on the computer is all recorded as a secret code associated with a VERY large number, one that would take even the fastest computers a long time to find it's prime factors.
 - Another computer or user can only unlock that code if it knows exactly what prime numbers to multiply together to equal the very large number.

Why do we care about prime numbers?

How many prime numbers are there?

Proof: There are infinitely many primes

Assume there are finitely many primes

 $p_1, p_2, p_3, p_4, \dots, p_n$

Let $Q = p_1 p_2 p_3 p_4 \dots p_n + 1$

Case 1: *Q* is prime.

Q isn't on my list

Case 2: Q is not prime

None of the primes on my list divide Q

Euclid (300 BC)

- Gave the first proof that there are infinitely many primes in Elements
- In his (translated) words: prime numbers are more than any assigned multitude of prime numbers
- He assumed that there is a list of primes and shows that you can always add to the list.
- Written before algebra (so all his proofs used straight lines and circles)

Euclid's Definition of Primes

A prime number is that which is measured by a unit alone.

Sieve of Eratosthenese

- Ancient algorithm for finding prime numbers up to a certain limit (n)
- List all the numbers
 - ► Cross off all multiples of 2
 - Cross off all multiples of 3
 - ▶ ...
 - Cross off all multiples of the nearest whole number less than \sqrt{n}
 - Remaining numbers are prime

										Onime numbers
	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

How do we search for prime numbers?

Look for patterns:

- 2 is the only even prime
- If a number's digits add to a multiple of 3, it is divisible by 3.
- Ex: 561:
 - 5+6+1=12
 - 561=3*187

The hunt for prime numbers

▶ 17th century French monk Marin Mersenne: numbers of the form $2^p - 1$ are possibly (but not certainly) prime

- By 1588 Pietro Cataldi had correctly verified that 2¹⁷-1 = 131071 and 2¹⁹-1 = 524287 are both prime
- ▶ In 1876 Édouard Lucas showed that $2^{127} 1$ is a prime
 - 39 digits remains the highest prime discovered by manual calculations
- In 1951, computers began to be used
 - that year a new record was set with a 79-digit number
- ▶ In 1999, the largest Mersenne prime 2⁶⁹⁷²⁵⁹³ 1 had 2,098,960 digits

What's the largest prime number?

- The current record is held by the 51st known Mersenne prime.
- Discovered on December 7, 2018 by Florida programmer Patrick Laroche.

$2^{82,589,933} - 1$

- 24,862,048 digits
 - 1.5 million digits bigger than the next largest known prime
- if you were to try to print it on paper, it would take almost 10,000 pages
- 12 days of nonstop computing to verify this is a prime number

Verifying a Prime – Lucas Test

Lucas Numbers:

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, ...

> Add the previous two terms to get the next one

Test: For any number, n,

- > 1. find the nth term in the Lucas sequence, L_n
- > 2. Subtract 1: $L_n 1$
- > 3. Check if $L_n 1$ is a multiple of n
- ▶ If YES, then n is probably a prime number. If NO, then n is definitely not prime.

Example:n=11

 $L_n - 1 = 199 - 1 = 198$

198=11*18 so 11 is probably prime

Example: n=8

 $L_n - 1 = 47 - 1 = 46$

46 is not a multiple of 8, so 8 is definitely not prime

Verifying a Prime: Lucas-Lehmer Test

- 4, 14, 194, 37634, 1416317954, 2005956546822746114,....
- To find the next term, square the previous term and subtract 2
- Test: For any number of the form 2^p 1
 1. Take p and find the p-1 term in the sequence
 2. If L_{p-1} Is a multiple of 2^p 1, then 2^p 1 is definitely a prime If L_{p-1} is a not multiple of 2^p - 1, then 2^p - 1 is definitely not a prime

Lucas used this method to show $2^{67} - 1$ is not prime without ever finding factors.

Can you find the next prime?

\$3,000 GIMPS Research Discovery Award for any new prime

- ▶ \$150,000 prize for finding a 100 million digit prime number
- The easiest way to get started is to download the Great Internet Mersenne Prime Search software and start searching.
 - https://www.mersenne.org/

Thank you!