Prime Numbers

DR. RACHEL NEVILLE
HIGH SCHOOL MATH DAY
NOVEMBER 2, 2022

What is a prime number?

A prime number is a number that can only be divided exactly by 1 and itself.

Examples:

7
is prime
12
is not prime: $12=3 * 2 * 2$
4219
is prime
15,233
is prime
523,147
is not prime: $523,147=967 * 541$

- Prime numbers are the building blocks of whole numbers:
- Every single number can be written uniquely as a product of prime numbers.
- There are beautiful mathematical patterns and properties that only hold for prime numbers.
- They remain mysterious.
- Example: Distribution of Primes:
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, \ldots$

Why do we care about prime numbers?

- Prime numbers keep your priv ate information safe online (RSA Encryption)
- Private information on the computer is all recorded as a secret code associated with a VERY large number, one that would take even the fastest computers a long time to find it's prime factors.
- Another computer or user can only unlock that code if it knows exactly what prime numbers to multiply together to equal the very large number.

Why do we care about prime numbers?

How many prime numbers are there?

Proof: There are infinitely many primes

Assume there are finitely many primes

$$
\begin{array}{r}
p_{1}, p_{2}, p_{3}, p_{4}, \ldots, p_{n} \\
\text { Let } Q=p_{1} p_{2} p_{3} p_{4} \ldots p_{n}+1
\end{array}
$$

Case $1: Q$ is prime.
Q isn't on my list
Case 2: Q is not prime
None of the primes on my list divide Q

Euclid (300 BC)

- Gave the first proof that there are infinitely many primes in Elements
- In his (translated) words: prime numbers are more than any assigned multitude of prime numbers
- He assumed that there is a list of primes and shows that you can always add to the list.
- Written before algebra (so all his proofs used straight lines and circles)

Euclid's Definition of Primes

A prime number is that which is measured by a unit alone.

Sieve of Eratosthenese

- Ancient algorithm for finding prime numbers up to a certain limit (n)
- List all the numbers
- Cross off all multiples of 2
- Cross off all multiples of 3
- ...
- Cross off all multiples of the nearest whole number less than \sqrt{n}
- Remaining numbers are prime

Prime numbers

How do we search for prime numbers?

Look for patterns:

2 is the only even prime

If a number's digits add to a multiple of 3 , it is divisible by 3.
Ex: 561:

$$
\begin{aligned}
& 5+6+1=12 \\
& 561=3^{*} 187
\end{aligned}
$$

The hunt for prime numbers

- $17^{\text {th }}$ century French monk Marin Mersenne: numbers of the form
$2^{p}-1$ are possibly (but not certainly) prime
- By 1588 Pietro Cataldi had correctly verified that $2^{17}-1=131071$ and

$$
2^{19}-1=524287 \text { are both prime }
$$

- In 1876 Édouard Lucas showed that $2^{127}-1$ is a prime
- 39 digits - remains the highest prime discovered by manual calculations
- In 1951, computers began to be used
- that year a new record was set with a 79 -digit number
- In 1999, the largest Mersenne prime $2^{6972593}-1$ had 2,098,960 digits

What's the largest prime number?

- The current record is held by the $51^{\text {st }}$ known Mersenne prime.
- Discovered on December 7, 2018 by Florida programmer Patrick Laroche.

$2^{82,589,933}-1$

- 24,862,048 digits
> 1.5 million digits bigger than the next Iargest known prime
- if you were to try to print it on paper, it would take almost 10,000 pages
- 12 days of nonstop computing to verify this is a prime number

Verifying a Prime - Lucas Test

Lucas Numbers:

$1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364,2207,3571,5778, \ldots$
\rightarrow Add the previous two terms to get the next one

Test: For any number, n,

1. find the nth term in the Lucas sequence, L_{n}
2. Subtract 1: $L_{n}-1$
3. Check if $L_{n}-1$ is a multiple of n

- If YES, then n is probably a prime number. If NO , then n is definitely not prime.

Example: $\mathrm{n}=11$
$L_{n}-1=199-1=198$
198=11*18 so 11 is probably prime

Example:n=8

$$
L_{n}-1=47-1=46
$$

46 is not a multiple of 8 , so 8 is definitely not prime

Verifying a Prime: Lucas-Lehmer Tes \dagger

>4,14, 194, 37634, 1416317954, 2005956546822746114,....

- To find the next term, square the previous term and subtract 2

Test: For any number of the form $2^{p}-1$

1. Take p and find the $\mathrm{p}-1$ term in the sequence
2. If L_{p-1} Is a multiple of $2^{p}-1$, then $2^{p}-1$ is definitely a prime If L_{p-1} is a not multiple of $2^{p}-1$, then $2^{p}-1$ is definitely not a prime

Lucas used this method to show $2^{67}-1$ is not prime without everfinding factors.

Can you find the next prime?

- $\$ 3,000$ GIMPS Research Discovery Award for any new prime
- $\$ 150,000$ prize for finding a 100 million digit prime number
- The easiest way to get started is to download the Great Internet Mersenne Prime Search software and start searching.
- https://www.mersenne.org/

Thank you!

