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Abstract

Combinatorial Properties of Complex Hyperplane
Arrangements

Ben Helford

Let A be a complex hyperplane arrangement, and M(A) be the com-

plement, that is C` −
⋃

H∈A

H. It has been proven already that the co-

homology algebra of M(A) is determined by its underlying matroid. In
fact, in the case where A is the complexification of a real arrangement,
one can determine the homotopy type by its oriented matroid.

This thesis uses complex oriented matroids, a tool developed recently
by D Biss, in order to combinatorially determine topological properties
of M(A) for A an arbitrary complex hyperplane arrangement.

The first chapter outlines basic properties of hyperplane arrange-
ments, including defining the underlying matroid and, in the real case,
the oriented matroid. The second chapter examines topological proper-
ties of complex arrangements, including the Orlik-Solomon algebra and
Salvetti’s theorem. The third chapter introduces complex oriented ma-
troids and proves some ways that this codifies topological properties of
complex arrangements. Finally, the fourth chapter examines the differ-
ence between complex hyperplane arrangements and real 2-arrangements,
and examines the problem of formulating the cone/decone theorem at the
level of posets.

ii



Acknowledgements

It almost goes without saying in my mind that this thesis could not be possible
without the direction and expertise provided by Dr. Michael Falk. Also I feel I
should mention Dr. V. Rao Potluri of Reed College for first instilling in me a love
and fascination in algebra, and by extension, algebraic topology.

iii



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Hyperplane Arrangements 1
1.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Underlying Matroid . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Oriented Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Topological Structures 16
2.1 The Cone/Decone Theorem . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 The Orlik-Solomon Algebra and the Salvetti Complex . . . . . . . . . 22

Chapter 3 Complex Hyperplane Arrangements 26
3.1 Complex Oriented Matroids . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Björner-Ziegler Matroids and Stratifications . . . . . . . . . . . . . . 32

Chapter 4 More on the Combinatorial Structure of Complex Ar-
rangements 38
4.1 Real 2-Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Isomorphism Classes of Complex Oriented Matroids . . . . . . . . . . 42

Bibliography 48

iv



List of Tables

4.1 Cocircuit sets for nonisomorphic underlying complex oriented ma-
troids for A1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



List of Figures

1.1 Example 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 L(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Geometric representation of Cov(A) . . . . . . . . . . . . . . . . . . 12
1.4 Hasse diagram for Cov(A1). . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 The arrangement A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 dA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 |P1| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Geometric representation of Cov(A). . . . . . . . . . . . . . . . . . . 24

3.1 dA′
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Cov+(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



Dedicated to Hermes, without whom I would never be able to keep everything in
perspective.

vii



Chapter 1

Hyperplane Arrangements

1.1 Definitions and Properties

The first chapter of this thesis will establish basic combinatorial properties of ar-
bitrary hyperplane arrangements, which will be a central focus in this thesis. This
section will outline basic structure of hyperplane arrangements, as well as define ba-
sic concepts that are necessary in this thesis. A more thorough examination can be
found in Orlik [8].

Definition 1.1 Let V be a vector space over a field K. Then a hyperplane in V is
the kernel of some nonzero linear functional F : V → K.

A hyperplane arrangement in V is a finite set A of hyperplanes. A is an essential

arrangement if
⋂

H∈A

H = {0}.

In this thesis we will always assume we are working with essential arrangements,
although most results can apply to arbitrary arrangements. In fact, if V is an
arbitrary vector space over K, and A an arrangement in V , we may assume A is

essential by projecting A onto V/W where W =
⋂

H∈A

H. This creates a hyperplane

arrangement in V/W : the projection of any hyperplane in A is also a hyperplane
in V/W since W ⊆ H for every H ∈ A. In fact, since W is the intersection of a
finite set of codimension 1 subspaces of V , we have that V/W is a finite dimensional
vector space.

So without loss of generality we may assume all hyperplane arrangements are
essential arrangements of K` for some `. We apply the convention of considering
the elements of K` as being column vectors and functionals K` → K as being row
vectors.

1
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Figure 1.1: Example 1.3

Definition 1.2 Let A = {H1, H2, . . . , Hn} be a hyperplane arrangement in K`. A
defining matrix of A, labeled B(A) is

F1

F2
...
Fn

 ,

where F1, F2, . . . , Fn are linear functionals K` → K, and Hj = kerFj for all j.

One may note that B(A) is not uniquely determined - for a hyperplane arrange-
ment A = {H1, . . . , Hn} with defining matrix B(A), we can multiply any row by a
scalar multiple from K∗, or switch any two rows and maintain the same hyperplane
arrangement (with a possible relabeling of H1, . . . , Hn).

Example 1.3 Let A be the arrangement of hyperplanes in R2 with defining matrix 1 0
0 1
1 1

. Then A is displayed in Figure 1.1.
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The main interest of this thesis is the topological properties of hyperplane ar-
rangements, so we will often limit our discussion to hyperplane arrangements in R`

and C` under standard Euclidean topology. Note that, although C` is homeomor-
phic to R2`, the stucture of hyperplane arrangements in C` is significantly different
than that of arbitrary arrangements of codimension 2 subspaces of R2`. Indeed, if
we view a hyperplane arrangement A in C` as being an arrangement of codimension
2 subspaces of R2`, then we’d note that the intersection of any pair of hyperplanes
in A will have codimension 4, and in fact any arbitrary intersection of subspaces
in A will have even codimension, which is not true for arbitrary arrangements of
codimension 2 subspaces of R2`. But even taking this into account, Section 4.1 of
this thesis will show that there are significant differences between arrangements in
C` and codimension two arrangements in R2`.

Definition 1.4 Let A be a hyperplane arrangement in R`, with defining matrix
B(A). Then the complexification of A is the arrangement AC in C` with defining
matrix B(AC) = B(A).

Note that the complexification of a real arrangement A is independent of the
choice of B(A). In a similar vein, we say an arrangement A in C` is a complexified
real arrangement if A can be defined by some real matrix B(A). Note that, for A the

hyperplane arrangement described in Example 1.3,

 1 0
0 1
1 1

 is a defining matrix

for both A and AC. However the matrix

 1 0
0 i
1 1

 is a defining matrix for AC but

not A.
The following definition covers an aspect of arrangements that is most fundamen-

tal to this thesis.

Definition 1.5 Let A be a hyperplane arrangement in V . Then the complement of

A is the set M(A) := V −
⋃

H∈A

H.

One may note that, as in Figure 1.1, in the case where V = R`, M(A) is a
disconnected space, since a real hyperplane splits R` into 2 halves. So in general, if
A is a real arrangement with n hyperplanes, then M(A) has up to 2n components1

1The combinatorics of this can be seen in Orlik [8], or Orlik and Terao [10].
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Figure 1.2: L(A)

(these components are labeled in Figure 1.3). However in the case where V = C`,
M(A) is a connected space.

The purpose of this thesis is to use combinatorial methods to analyze the topo-
logical properties of M(A) in the case where A is an arrangement in C`. For this,
the following will be of considerable importance.

Definition 1.6 Let A be a hyperplane arrangement. Then the intersection lattice,
denoted L(A) is the poset with underlying set{⋂

H∈A

H | A ⊆ A

}
,

where X ≤ Y if X ⊇ Y .
For X ∈ L(A) we say AX is the arrangement {H ∈ A | H ≤ X}.

By convention, we say
⋂
H∈∅

H = V , and is thus the minimal element of L(A),

whereas the maximal element of L(A) is
⋂

H∈A

H. WhenA is an essential arrangement,

L(A) has maximal element {0}.

Example 1.7 Consider A as defined in Example 1.3. Then L(A) is as displayed in
Figure 1.2. Note that L(A) ∼= L(AC), where AC is the complexification of A as in
Definition 1.4.
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1.2 The Underlying Matroid

The purpose of this section is to understand the basic matroid stucture of a hyper-
plane arrangement. All concepts related to matroid theory used in this section can
be found in the first chapter of J. G. Oxley’s Matroid Theory [11].

Definition 1.8 A matroid is a (finite) ground set E with a closure operation cl :
2E → 2E such that for all X, Y ⊆ E,

(1) X ⊆ cl(X),

(2) if X ⊆ Y , then cl(X) ⊆ cl(Y ),

(3) cl(cl(X)) = cl(X), and

(4) for x ∈ E, if y ∈ cl(X ∪ {x})− cl(X) then x ∈ cl(X ∪ {y}).

A subset F ⊆ E is called a flat if cl(F ) = F . The lattice of flats for a matroid is
the set of all flats ordered by inclusion.

In this section, we will prove that we can define a matroid for any hyperplane
arrangement A, whose lattice of flats is the lattice L(A), then we will prove directly
that L(A) is indeed a geometric lattice.

Theorem 1.9 Let A = {H1, H2, . . . , Hn} be a hyperplane arrangement in some fi-
nite dimensional vector space V . Define cl : 2A → 2A by

cl(A) =

{
h ∈ A | h ⊇

⋂
H∈A

H

}
.

Then cl defines a matroid.

For this we need the following lemma.

Lemma 1.10 Let A be a hyperplane arrangement in finite dimensional vector space

V , A ⊆ A and h ∈ A such that h 6⊇
⋂

H∈A

H. Then

dim

(
h ∩

⋂
H∈A

H

)
= dim

(⋂
H∈A

H

)
− 1.



6

Proof Let V = K` and let F : K` → K be the linear functional such that h = kerF ,

and let W =
⋂

H∈A

H, and consider F |W : W → K. Then clearly we have kerF |W =

h ∩
⋂

H∈A

H, and dim(imF |W ) = 1 since by assumption h ∩
⋂

H∈A

H (
⋂

H∈A

H. So we

must have dim

(
h ∩

⋂
H∈A

H

)
= dim(kerF |W ) = dim

(⋂
H∈A

H

)
− 1.

Proof of 1.9 Let A ⊆ A. Then clearly, if h ∈ A, then h ⊇
⋂

H∈A

H, so h ∈

cl(A), hence A ⊆ cl(A), so (1) is satisfied. Also, by the definition, it is clear that⋂
H∈A

H =
⋂

H∈cl(A)

H, so that h ⊇
⋂

H∈A

H if and only if h ⊇
⋂

H∈cl(A)

H, ie cl(cl(A)) =

cl(A), so (2) is satisfied.

Now, suppose A ⊆ B ⊆ A. Then we have
⋂

H∈A

H ⊇
⋂

H∈B

H. Then for h ∈ A,

if h ∈ cl(A), then h ⊇
⋂

H∈A

H ⊇
⋂

H∈B

H, so that h ∈ cl(B). Thus we have cl(A) ⊆

cl(B), so that (3) is satisfied.
To show that (4) is satisfied, let h, k ∈ A, and suppose k ∈ cl(A ∪ {h}), with

k /∈ cl(A). Then by definition we have k ⊇ h ∩
⋂

H∈A

H, but k 6⊇
⋂

H∈A

H. So, by

Lemma 1.10, we have dim

(
k ∩

⋂
H∈A

H

)
= dim

(⋂
H∈A

H

)
− 1.

By assumption, we must have h 6⊇
⋂

H∈A

H. Then by Lemma 1.10 we have

dim

(
h ∩

⋂
H∈A

H

)
= dim

(⋂
H∈A

H

)
− 1 = dim

(
k ∩

⋂
H∈A

H

)
.

By assumption, we have k ⊇ h ∩
⋂

H∈A

H, hence k ∩
⋂

H∈A

H ⊇ h ∩
⋂

H∈A

H. But

dim

(
k ∩

⋂
H∈A

H

)
= dim

(
h ∩

⋂
H∈A

H

)
, so it must be true that k ∩

⋂
H∈A

H = h ∩
⋂

H∈A

H,

thus h ⊇ k ∩
⋂

H∈A

H, i.e. h ∈ cl(A ∪ {k}), so that cl does indeed define a matroid

over A.
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We call the matroid defined in Theorem 1.9 the underlying matroid of A.

Corollary 1.11 Let A be a hyperplane arrangement. Then L(A) is isomorphic to
the lattice of flats for the underlying matroid of A under the mapping X 7→ AX .

Proof Let X =
⋂

H∈A

H. Then AX is exactly the set cl(A), so that AX is a flat in

the underlying matroid. Furthermore, for X, Y ∈ L(A), AX ⊆ AY if and only if
X ⊇ Y , so that the defined mapping is order preserving. Finally the mapping is
invertible, since for a flat F in the underlying matroid of A, the inverse mapping is

simply F 7→
⋂

H∈F

H.

Remark 1.12 There are several equivalent ways to define a matroid, starting with
a finite ground set E. One way is to specify a set I ⊆ 2E of independent sets that
satisfies

(1) ∅ ∈ I,

(2) if I ∈ I and J ⊆ I then J ∈ I,

(3) if I1, I2 ∈ I with |I1| < |I2| then there is some x ∈ I2−I1 such that I1∪{x} ∈ I.

Note that, by (3), for any subset X ⊆ E, every maximal I ⊆ X with I ∈ I has
the same cardinality. Based on this we can define a rank function r : 2E → N where
for X ⊆ E, r(X) is the size of a maximal independent subset contained in X.2 From
here, we can define cl(X) := {x ∈ E | r(X ∪ {x}) = r(X)}. Then cl satisfies all the
axioms in Definition 1.8. Similarly, given a function cl that satisfies the axioms in
Definition 1.8, if we define I as the set {X ⊆ E | x /∈ cl(X − {x}) for all x ∈ X}
then I satisfies all the above. Thus the two definitions are equivalent.

Definition 1.13 Let E be a finite set with |E| = n and let m < n. Then the
uniform matroid of rank m on E, labelled Um,n, is the matroid whose independent
sets are exactly those I ⊆ E where |I| ≤ m.

Note that if V = K2 and A is an arrangement with n hyperplanes, then the
underlying matroid is U2,n, since for any 2 distinct hyperplanes H,H ′ ∈ A we have

H ∩H ′ =
⋂

H∈A

H = {0}.

We now turn our attention to proving that L(A) is a geometric lattice. To begin
we need the following definition.

2We apply the convention 0 ∈ N.



8

Definition 1.14 Let P be a poset. Then P is a lattice if there exist elements 1̂ and
0̂ such that for any p ∈ P , 0̂ ≤ p ≤ 1̂, and for every a, b ∈ P there exists a greatest
lower bound, denoted a ∧ b, and a least upper bound, denoted a ∨ b.

Let L be a lattice. Then L is a geometric lattice if there is a rank function
r : L → N such that for a, b ∈ L, r(a) ≤ r(b) when a ≤ b, and r(a∨ b) ≤ r(a) + r(b).

For a vector space V , and W a subspace of V , we define codim(W ) = dim(V/W ).
If dim(V ) = `, then codim(W ) = `− dim(W ). We are now ready for the following.

Theorem 1.15 Let A be a hyperplane arrangement in V . Then L(A) is a geometric
lattice with rank function r(X) = codim(X) for X ∈ L(A).

Proof Without loss of generality, we can assume that A is an essential arrangement,

so clearly we have minimal element 0̂ = V =
⋂
H∈∅

H and maximal element 1̂ = {0}.

Now, let X, Y ∈ L(A) and let A = AX and B = AY . Then define

X ∧ Y :=
⋂

H∈A∩B

H,

X ∨ Y :=
⋂

H∈A∪B

H.

Then since A,B ⊇ A∩B and A,B ⊆ A∪B, we haveX, Y ≤ X∧Y andX, Y ≥ X∨Y .
Now let W,Z ∈ L(A) such that W ≤ X ≤ Z and W ≤ Y ≤ Z, i.e. W ⊇ X ⊇ Z
and W ⊇ Y ⊇ Z.

Then since Z ⊆ X and Z ⊆ Y , we have

Z ⊆

(⋂
H∈A

H

)
∩

(⋂
H∈B

H

)
=

⋂
H∈A∪B

H = X ∨ Y

so that Z ≥ X ∨ Y .
Now, we have that W ⊇ X ∪ Y so that W ⊃ X and W ⊃ Y . Then for H ′ ∈ AW

we have H ′ ⊇ W so that H ′ ⊇ X and H ′ ⊇ Y , thus H ′ ∈ AX = A and H ′ ∈ AY = B.
So in particular

H ′ ⊇
⋂

H∈A∪B

H = X ∧ Y,

which means H ′ ∈ AX∧Y . Thus we have AW ⊆ AX∧Y , so that W ⊇ X ∧ Y , i.e.
W ≤ X ∧ Y .
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Let r be defined as above. Then for X ≤ Y , we have X ⊇ Y , so that codim(X) ≤
codim(Y ), i.e. r(X) ≤ r(Y ). Now let B = {H1, H2, . . . , Hm}. Then if codim(Y ) = k,

there is some subset {H1, H2, . . . , Hik} ⊆ B such that Y =
k⋂

j=1

Hij . Then we have

X ∨ Y =
⋂

H∈A∪B

H =

(⋂
H∈A

H

)
∩

(⋂
H∈B

H

)
=

(⋂
H∈A

H

)
∩Hi1 ∩Hi2 ∩ · · · ∩Hik .

Thus to prove r(X ∨ Y ) ≤ r(X) + r(Y ) it is sufficient to prove for H ∈ A that
r(X∨H) ≤ r(X)+r(H) = r(X)+1. Which is equivalent to saying that dim(X∩H) ≥
dim(X)− 1, which is true by Lemma 1.10. Thus L(A) is indeed a geometric lattice,
with rank function r.

Remark 1.16 For any matroid, the lattice of flats forms a geometric lattice. In fact,
it is an interesting result that every geometric lattice is isomorphic to the lattice of
flats of some matroid. Given a geometric lattice, let E be the set of all atoms
of the lattice, that is, all elements of rank 1. Then identify each element of the
lattice with the set of all atoms less than or equal to it - in particular the minimal
element becomes ∅ and the maximal element becomes E. Then for some subset
A = {e1, e2, . . . , ek} ⊆ E, let cl(A) be the set associated with e1 ∨ e2 ∨ · · · ∨ ek. The
reader can confirm that this defines a matroid.

One final important note in the study of the underlying matroid of a hyperplane
arrangement is the notion of circuits. In general for a matroid over a base set E, a
circuit is a minimal subset C ⊆ E where C /∈ I where I is the set of independent
sets as defined in Remark 1.12. In practice, though, for a hyperplane arrangement

A, the circuits are exactly those subsets A ⊆ A where codim

(⋂
H∈A

H

)
= |A| − 1.

Recall in Example 1.7, forA the arrangement in R2 defined by

 1 0
0 1
1 1

, L(A) =

L(AC). This is in fact true in general, and we can go a step further, and show that a
real arrangement A and its complexification AC have the same underlying matroid.
For this, note that for A a real hyperplane arrangement, AC = {H + iH | H ∈ A},
since for a complexified real linear functional F : C` → C for x ∈ R` ⊆ C`, we have
F (x) = 0 if and only if F (ix) = 0.
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Theorem 1.17 Let A be a real hyperplane arrangement in R` and AC be its complex-
ification. Then let cl : 2A → 2A and cl′ : 2AC → 2AC be defined as closure operations
for the underlying matroids of A and AC respectively, as defined in Theorem 1.9,
and let π : A → AC be the mapping H 7→ H + iH. Then cl′ = π ◦ cl.

Proof It is sufficient to prove that L(A) ∼= L(AC). Let A = {H1, H2, . . . , Hn}
and AC = {H ′

1, H
′
2, . . . , H

′
n} where H ′

j = Hj + iHj. Now let X ∈ L(A), and let

{Hi1 , Hi2 , . . . , Hik} ⊆ A such that X =
k⋂

j=1

Hij . Then we have

L(AC) 3 X ′ :=
k⋂

j=1

H ′
ij

=
k⋂

j=1

Hij + iHij =
k⋂

j=1

Hij + i
k⋂

j=1

Hij = X + iX.

And by similar argument we have that for every Y ∈ L(AC) there is some X ∈ L(A)
with Y = X + iX. Then the underlying set of L(AC) is {X + iX | X ∈ L(A)}, and
since for X, Y ⊆ R`, we have X ⊇ Y if and only if X + iX ⊇ Y + iY , this shows
that L(A) ∼= L(AC).

1.3 Oriented Matroids

We define oriented matroids as in 3.7 of [4], with notation adapted from Biss [2].
We begin by defining a poset I whose underlying set is {0,+,−} with order relation
defined by the Hasse diagram

+ −

0

��������

????????

We impose standard canonical order on In, where for X, Y ∈ In, X ≤ Y if and only
if Xj ≤ Yj for each j.

We now define the following operations on In.

Definition 1.18 Let X, Y ∈ In. Then define −X and X ◦ Y as follows:

(−X)j :=


− if Xj = +
+ if Xj = −
0 if Xj = 0
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and

(X ◦ Y )j :=

{
Xj if Xj 6= 0
Yj if Xj = 0

Example 1.19 If X = (+, 0,−, 0) and Y = (−, 0,+,+) then we have −X =
(−, 0,+, 0) and X ◦ Y = (+, 0,−,+).

For the following definition, we consider the 0 ∈ In as the element (0, 0, . . . , 0).

Definition 1.20 An oriented matroid is a set Cov ⊆ In such that

(0) 0 ∈ Cov,

(1) if X ∈ Cov then −X ∈ Cov,

(2) if X, Y ∈ Cov then X ◦ Y ∈ Cov,

(3) if X, Y ∈ Cov, Xj = −Yj 6= 0, then there is Z ∈ Cov such that Zj = 0 and
for all i where {Xi, Yi} 6= {+,−}, Zi = (X ◦ Y )i.

Elements of Cov are called covectors. There is a natural association between ori-
ented matroids and real hyperplane arrangements, but first we need the sign function
sgn : R → I, defined naturally as

sgn(x) =


+ if x > 0
− if x < 0
0 if x = 0

The function sgn will be extended to functions sgn : C → I2 defined by sgn(x+iy) =
(sgn(x), sgn(y)). Also we will extend to R` and C` respectively by the formula
sgn(x1, x2, . . . , x`) = (sgn(x1), sgn(x2), . . . , sgn(x`)). It will be clear from context
what the domain of sgn should be. One can note that for x ∈ R`, and r ∈ R that

sgn(rx) = sgn(r)sgn(x) = (sgn(r)sgn(x1), sgn(r)sgn(x2), . . . , sgn(r)sgn(x`))

under the following multiplication table:

0 + −
0 0 0 0
+ 0 + −
− 0 − +

We are now ready for the following definition.
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H1

H2

H3

(0,+,+) (+,+,+)

(+,0,+)

(+,-,+)

(+,-,0)(+,-,-)(0,-,-)
(-,-,-)

(-,0,-)

(-,+,-)

(-,+,0) (-,+,+)

Figure 1.3: Geometric representation of Cov(A)

Definition 1.21 Let A be a hyperplane arrangement in R` with defining matrix
B(A). Then the set of covectors of A is the set

Cov(A) := {sgn(B(A)x) | x ∈ R`}.

We have Cov(A) is partially ordered as a subposet of In.

Example 1.22 Recall that A1 is defined by B(A1) =

 1 0
0 1
1 1

. Then Figure 1.3

shows all the covectors in the matroid. The Hasse diagram for Cov(A1) is shown in
Figure 1.4.

Theorem 1.23 Let A be an arrangement in R` with defining matrix B(A). Then
Cov(A) is the set of covectors of an oriented matroid.

Proof Let Fi be the rows of B(A), with each Fi : R` → R a linear functional.
For (0), note that Fi(0) = 0 for each i, thus B(A)0 = 0, so 0 ∈ Cov(A). Also,

for (1) if x ∈ R` then Fi(−x) = −Fi(x), so that sgn(B(A)(−x)) = −sgn(B(A)x).
Thus for each X ∈ Cov(A), −X ∈ Cov(A).
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(+,+,+)

QQQQQQQQQQQQQQQQQQQQQ
(−,−,−)

SSSSSSSSSSSSSSSSSSSSSSSSS
(+,−,+)

SSSSSSSSSSSSSSSSSSSSSSSSS
(−,+,−)

QQQQQQQQQQQQQQQQQQQQQ
(−,+,+)

fffffffffffffffffffffffffffffffffffffffffffffffffff (+,−,−)

fffffffffffffffffffffffffffffffffffffffffffffffffff

(0,+,+)

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU (0,−,−)

OOOOOOOOOOOOOOOOOOOOO
(+, 0,+)

99
99

99
99

99
99

(−, 0,−)

��
��

��
��

��
��

(+,−, 0)

ooooooooooooooooooooo
(−,+, 0)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

0

Figure 1.4: Hasse diagram for Cov(A1).

For (2), letX,Y ∈ Cov(A) and x,y ∈ R` with sgn(B(A)x) = X and sgn(B(A)y) =
Y . Consider the set

D :=

{
|Fj(x)|
|Fj(y)|

| Fj a row of B(A);Fj(x), Fj(y) 6= 0

}
If D = ∅, then let ε = 1. Otherwise let 0 < ε < minD.

Now consider B(A)(x + εy). Then for each i, if Xi = 0 then

sgn(Fi(x + εy) = sgn(Fi(x) + εFi(y))

= sgn(0 + εFi(y))

= sgn(Fi(y)) = Yi = (X ◦ Y )i.

On the other hand, if Xi 6= 0, then since −(X ◦ Y ) = (−X) ◦ (−Y ), we can assume
that Xi = +. Then if Yi = + or Yi = 0, we have that sgn(Fi(x + εy)) = + = Xi.
Now suppose that Yi = −. Then D 6= ∅, so we have

Fi(x + εy) = Fi(x) + εFi(y)

= |Fi(x)| − ε|Fi(y)|

> |Fi(x)| − |Fi(x)|
|Fi(y)|

|Fi(y)| = 0.

Thus sgn(Fi(x + εy)) = + = Xi = (X ◦ Y )i. Thus we have sgn(B(A)(x + εy)) =
X ◦ Y , so X ◦ Y ∈ Cov(A).
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For (3), let X, Y ∈ Cov(A) with Xj = −Yj 6= 0. We seek a Z ∈ Cov(A) such
that Zj = 0 and Zi = (X ◦ Y )i if {Xi, Yi} 6= {+,−}.

Without loss of generality we can assume that Xj = + and Yj = −. Let x,y ∈ R`

such that sgn(B(A)x) = X and sgn(B(A)y) = Y . Then Fj(x) > 0 and Fj(y) < 0.

We can assume that Fj(y) = −Fj(x) by replacing y with
Fj(x)

−Fj(y)
y, since for every

i we have

sgn

(
Fi

(
Fj(x)

−Fj(y)
y

))
= sgn

(
Fj(x)

−Fj(y)
Fi(y)

)
= sgn

(
Fj(x)

−Fj(y)

)
sgn(Fi(y))

= sgn(Fi(y),

so sgn

(
B(A)

Fj(x)

−Fj(y)
y

)
= Y .

So we have sgn(B(A)x) = X and sgn(B(A)y) = Y with Fj(y) = −Fj(x). Then
let Z = sgn(B(A)(x+y)). Then clearly Zj = sgn(Fj(x+y)) = sgn(Fj(x)+Fj(y)) =
sgn(Fj(x) − Fj(x)) = 0. Now suppose that for some i, {Xi, Yi} 6= {+,−}. Then if
Xi = 0 we have

sgn(Fi(x + y)) = sgn(Fi(x) + Fi(y)) = sgn(0 + Fi(y)) = Yi = (X ◦ Y )i.

On the other hand if Xi 6= 0 then Yi = 0, so that by similar calculation as above
we have sgn(Fi(x + y)) = Xi = (X ◦ Y )i. Thus Z is the covector as described in
(3).

Note that, for a real arrangement A, the oriented matroid Cov(A) depends on
the choice of a defining matrix B(A). However, a nice feature is that the structure
of the oriented matroid is determined independently of A.

For Cov1 and Cov2 oriented matroids in In, we say Cov1 ∼ Cov2 if and only if
they are isomorphic as partially ordered sets.

Theorem 1.24 Let A be a hyperplane arrangement in R` and let B1(A) and B2(A)
be defining matrices of A with associated oriented matroids Cov1(A) and Cov2(A)
respectively. Then Cov1(A) ∼ Cov2(A).

Proof Let A = {H1, H2, . . . , Hn} with B1(A) the matrix
F1

F2
...
Fn
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with Hi = kerFi. Then without loss of generality we can assume that B2(A) is the
matrix 

F ′
1

F ′
2
...
F ′

n


where Hi = kerF ′

i = kerFi. But this means we must have F ′
i = λiFi where λi ∈ R∗

for each 1 ≤ i ≤ n. Now define a mapping ϕ : Cov1(A) → Cov2(A) as ϕ(X)i =
sgn(λi)Xi. Then clearly ϕ is order preserving. It is also invertible; in fact we have
ϕ−1 : Cov2(A) → Cov1(A) is simply defined by ϕ(X)i = sgn(1/λi)Xi = sgn(λi)Xi,
so that ϕ is a poset isomorphism, thus Cov1(A) ∼= Cov2(A).

Let Cov ⊆ In be an oriented matroid, and for X ∈ Cov define Z(X) ⊆
{1, . . . , n} as the set {j | Xj = 0}. Then the Z(X)’s ordered by inclusion forms
a geometric lattice, thus are the flats of a matroid over {1, . . . , n}. We call this the
underlying matroid of A. For Cov1,Cov2 oriented matroids we say Cov1

∼= Cov2 if
Cov1 ∼ Cov2 and the underlying matroids of Cov1 and Cov2 are isomorphic. Note
that for A a real arrangement, the underlying matroid of Cov(A) is isomorphic to
the underlying matroid of A. Thus we can make the stronger statement in the above
theorem to state that Cov1

∼= Cov2.
It is possible to find two oriented matroids Cov1 and Cov2 such that Cov1 ∼

Cov2 but Cov1 6∼= Cov2. For example, let Cov2 be the set consisting of items of
the form X × {0} for all X ∈ Cov1.

The isomorphism ϕ in the proof above is an example of a reorientation. In general,
for Cov1,Cov2 ⊆ In, a function ϕ : Cov1 → Cov2 is a reorientation if there exists
some s ∈ {+,−}n where (ϕ(X))j = sjXj where sj ∈ {+,−}. Similarly, a function
ρ : Cov1 → Cov2 is a relabeling if there is permutation σ of {1, . . . , n} such that
(ρ(Xj)) = Xσ(j).

Clearly, reorientations and relabelings are both isomorphisms of oriented ma-
troids. What remains an open question is whether there are any isomorphisms
f : Cov1 → Cov2 where f 6= ϕ ◦ ρ for ϕ a reorientation and ρ a relabeling. And if
there are such isomorphisms, then are there any oriented matroids Cov1 and Cov2

such that Cov1
∼= Cov2, but there are no reorientations ϕ and relabelings ρ such

that ϕ ◦ ρ defines an isomorphism Cov1 → Cov2.



Chapter 2

Topological Structures

2.1 The Cone/Decone Theorem

Of particular value to this section is the definition of projective space. For this, let
K be a field. In definitions of projective space and decones of arrangements, K can
be any arbitrary field. However, the topological properties studied in this chapter
require K = R or C.

Definition 2.1 Let K be a field. Projective `-space over K denoted P`(K) is the set
of equivalence classes of K`+1−{0} under the relation (k0, k1, . . . , k`) ∼ (λk0, λk1, . . . , λk`)
for all λ ∈ K∗. The equivalence class of (k0, k1, . . . , k`) is denoted [k0 : k1 : · · · : k`].

A point [k0 : k1 : · · · : k`] is said to be a point at infinity if k0 = 0. The set
H := {[k0 : k1 : · · · : k`] ∈ P`(K) | k0 = 0} is called the hyperplane at infinity.

Remark 2.2 There is a one-to-one onto correspondence between K` and P`(K)−H.
Let P = P`(K)−H. Then we can define mappings ϕ : K` → P as

(k1, k2, . . . , k`) 7→ [1 : k1 : k2 : · · · : k`],

and ψ : P → K` as

[k0 : k1 : k2 : · · · : k`] 7→ (k1/k0, k2/k0, . . . , k`/k0).

Note that ψ is well defined since k0 6= 0 in P.
Clearly ϕ ◦ ψ is the identity on K`. On the other hand we have

ψ ◦ ϕ([k0 : k1 : k2 : · · · : k`]) = [1 : k1/k0 : k2/k0 : · · · : k`/k0].

16
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But by definition of projective space, this is equal to [k0 : k1 : k2 : · · · : k`], so that
ψ ◦ϕ is the identity on P. Thus we have that ϕ and ψ are in fact inverse mappings.
From this we identify projective space P`(K) with K` ∪H.

Also, note that our choice of H is entirely arbitrary, and in fact we can choose
any hyperplane in P`(K) to be the hyperplane at infinity, it would simply require a
different definition of ϕ and ψ.

We now define a generalization of hyperplane arrangements.

Definition 2.3 Let V be a vector space over a field K. Then an affine functional is
a function F : V → K where F (v) = F ′(v) + k with v ∈ V , F ′ : V → K is a linear
functional and k ∈ K. An affine hyperplane is the kerner of some affine functional.

We say A is an affine hyperplane arrangement in V if A is a finite set of affine
hyperplanes. If 0 ∈ H for every H ∈ A then A is a central arrangement.

Note that until now, our attention has been restricted to central arrangements.
Let A = {H0, H1, . . . , Hn} be a central arrangement in K`+1 with H0 ∈ A be the

hyperplane defined by x0 = 0. We can assume this is the case, since if not we can
simply change bases.

Definition 2.4 Let A = {H0, H1, . . . , Hn} be a central hyperplane arrangement in
K`+1 with H0 ∈ A defined by x0 = 0. Then the decone of A, labeled dA, is the affine
arrangement {H ′

1, H
′
2, . . . , H

′
n} in {1} ×K` ∼= K` where H ′

j = Hj ∩ {x ∈ K`+1 | x0 =
1}.

Example 2.5 Consider the hyperplane arrangement in R3 defined by the matrix
1 0 0
1 1 0
1 0 1
0 1 1

.
Then A2 is shown in Figure 2.1 and dA2 is shown in Figure 2.3.

Remark 2.6 If H is a hyperplane in K`+1, then define H̄ ⊆ P`(K)

H̄ := {[k0 : k1 : · · · : k`] | (k0, k1, . . . , k`) ∈ H − {0}}

Then H̄ is a projective hyperplane since for all x ∈ H, λx ∈ H for every λ ∈ K.
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Figure 2.1: The arrangement A

Figure 2.2: dA
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Let A = {H0, H1, . . . , Hn} be a central arrangement in K`+1 with H0 defined by
x0 = 0. Then we define Ā as the projective arrangement {H̄0, H̄1, . . . , H̄n} in P`(K).
Then note that H0 = H from Definition 2.1. Thus we have M(Ā) ⊆ P`(K) − H
and furthermore that ψ(M(Ā)) = M(dA) for ψ defined in Remark 2.2, thus we have
M(Ā) ∼= M(dA).

We are now ready to show the relationship between M(A) and M(dA)..

Theorem 2.7 (Cone/Decone Theorem) Let A be a central hyperplane arrange-
ment in C`+1. Then M(dA)× C∗ ∼= M(A).

Proof Assume H0 ∈ A is the hyperplane defined by z0 = 0. Define f : C`+1−H0 →
C`+1 −H0 as the map

(z0, z1, z2, . . . , z`) 7→ (z0, z0z1, z0z2, . . . , z0z`).

Then f is a continuous, open function with inverse defined by

(z0, z1, z2, . . . , z`) 7→ (z0, z1/z0, z2/z0, . . . , z`/z0),

so that f is a homeomorphism C` −H0 → C` −H0.
Note that C`+1−H0 = C∗×C` ∼= C`×C∗, C`+1−H0 ⊇M(A), and C`+1−H0 ⊇

{1} ×C` ⊇M(dA). Thus all that remains is to show that f(C∗ ×M(dA)) = M(A).
Note that for z ∈M(A), cz ∈M(A) for all c ∈ C∗. Thus for z = (z0, z1, z2, . . . , z`) ∈

C∗ ×M(dA), we have (1, z1, z2, . . . , z`) ∈ M(A) so that z0(1, z1, z2, . . . , z`) = f(z) ∈
M(A), i.e. f(C∗ ×M(dA)) ⊆M(A).

Now, let z = (z0, z1, z2, . . . , z`) ∈M(A). Then z0 6= 0, so that

(z1/z0, z2/z0, . . . , z`/z0) = z′ ∈M(dA).

But this means z0 × z′ = f−1(z) ∈ C∗ ×M(dA), so that f−1(M(A)) ⊆ C∗ ×M(dA),
i.e. M(A) ⊇ f(C∗ ×M(dA)).

2.2 Simplicial Complexes

This section deals with regular cell complexes, and in particular the special case of
simplicial complexes. Much of this section is adapted from Björner [3] and Spanier
[13].
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Definition 2.8 A simplicial complex is an ordered pair ∆ = (V , τ), where V is a
nonempty, finite set of vertices and τ is a set of subsets of V with ∅ /∈ τ such that
for each v ∈ V , {v} ∈ τ , and, if ∅ 6= σ ⊆ σ′ ∈ τ , then σ ∈ τ .

For σ ∈ τ , define dimσ := |σ| − 1, and for ∆ = (V , τ) define

dim ∆ := max{dimσ | σ ∈ τ}.

By convention, we do not differentiate between the elements v ∈ V and {v} ∈ τ .
We now define the following that will be useful in this section.

Definition 2.9 Let B = {x1,x2, . . . ,xn} ⊆ R`. Then the convex hull of B, denoted

convB, is the set of all elements of the form
n∑

j=1

λjxj where each λj ∈ R, λj ≥ 0 and∑
j λj = 1.

Definition 2.10 Let ∆ = (V , τ) be a simplicial complex with V = {v1, v2, . . . , vn},
and let {e1, e2, . . . , en} be the standard basis for Rn. Then the geometric realization
of ∆, written |∆|, is the set

|∆| :=
⋃
σ∈τ

conv {ei | vi ∈ σ}.

For ∆ = (V , τ) a simplicial complex, another way to define |∆| is as the set{∑
v∈V

λvv | λv ≥ 0 for all v,
∑

v

λv = 1, {v | λv 6= 0} ∈ τ

}
.

Definition 2.11 For P a poset, we define the order complex of P with V = P and
τ the set of all chains v1 < v2 < · · · < vk. We will write |P| to mean the geometric
realization of the order complex of P .

Example 2.12 Let P1 be the poset with Hasse diagram

v3

v1

||||||||
v2

BBBBBBBB

v0

||||||||

BBBBBBBB
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v0

v3

v1 v2

Figure 2.3: |P1|

Then we have dimP1 = 2, as the maximal chains are v0 < v1 < v3 and v0 < v2 < v3.
The geometric realization |P1| is seen in Figure 2.2. Note that although, by definition,
|P1| is a subset of R4, it is in fact homeomorphic to the closed disc in R2.

In general for a simplicial complex ∆ = (V , τ) with dim ∆ = n, |∆| is by definition
a union of manifolds, each of dimension at most n. Although by definition we have
|∆| ⊆ R|V|, in practice this is hideously inefficient and cumbersome. We will thus not
differentiate between |∆| and any homeomorphic image of |∆| with properly labeled
faces.

Now, we wish to establish an important aspect of order complexes. If P ,Q are
posets, then we define a poset P × Q with order relation (p1, q1) ≤ (p2, q2) if and
only if p1 ≤ p2 in P and q1 ≤ q2 in Q. It is a useful fact which will be proved in
Theorem 2.14 that |P ×Q| ∼= |P| × |Q|. But first we need the following well known
property from topology.

Proposition 2.13 Let X be a compact space and Y a Hausdorff space, with f :
X → Y a bijective, continuous mapping. Then f is a homeomorphism.

The following uses methods found in Walker [15].

Theorem 2.14 Let P ,Q be finite posets. Then |P × Q| ∼= |P| × |Q|.

Sketch of Proof Define f : |P × Q| → |P| × |Q| as the mapping

k∑
j=0

λj(pj, qj) 7→

(
k∑

j=0

λjpj,
k∑

j=0

λjqj

)
,
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for
∑

j λj = 1, λj ≥ 0 for all j and (p0, q0) < (p1, q1) < · · · < (pj, qj) in P ×Q.
It’s clear that f is continuous, since f is affine. Also, clearly both |P × Q| and

|P| × |Q| are compact, Hausdorff spaces. Thus by Proposition 2.13 all that remains
is to show that f is bijective.

The construction of f−1 amounts to the rather difficult task of constructing a
simplicial structure on |σ| × |τ | for σ a chain in P and τ a chain in Q. One way
to do this is seen in 277-278 in Hatcher [7]. For this, let σ be the chain p1 < p2 <
· · · < pm and τ be the chain q1 < q2 < · · · < qn. Then we can view |σ| as the
subset of Rm with 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ 1 and |τ | as the subset of Rn with
0 ≤ y1 ≤ y2 ≤ · · · ≤ yn ≤ 1. Then one simplex in Rm+n can be all elements
(x1, x2, . . . , xm, y1, y2, . . . , yn) with 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ y1 ≤ y2 ≤ · · · ≤ ym ≤
1. To finish creating a simplicial structure on |σ|×|τ |, we apply a shuffle permutation
to the set {x1, x2, . . . , xm, y1, y2, . . . , yn} - that is a permutation that switches some
of the xi’s with yi’s, and order them as before. This creates a simplicial complex on
|σ| × |τ | that is isomorphic to |σ × τ |.

2.3 The Orlik-Solomon Algebra and the Salvetti Complex

One of the useful aspects of complex arrangements is that their combinatorial prop-
erties tell us a lot about the topology of their complements. In fact, just from the
underlying matroid of a complex arrangement A one can determine the cohomology
algebra for the complement. In the case thatA is a complexified real arrangement, we
can go a step further - using the underlying oriented matroid of the real arrangement
to determine the homotopy type of M(A).

The following theorem was originally proven by Orlik and Solomon [9], and is the
inspiration for the use of matroids and oriented matroids in the study of hyperplane
arrangements.

Theorem 2.15 Let A be a complex arrangement in C` with defining matrix B(A)
whose rows are F1, F2, . . . , Fn : C` → C. Then the integral cohomology algebra of
M(A) is generated by the classes

ωj :=
1

2πi

dFj

Fj

,

for 1 ≤ j ≤ n. It has presentation of the form

0 → I → Λ∗Zn π→ H∗(M(A); Z) → 0,
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defined by π(ej) := [ωj], where {e1, e2, . . . , en} denotes a basis of Zn. The relation
ideal I is generated by the elements

k∑
j=0

(−1)jei0 ∧ · · · ∧ êij ∧ · · · ∧ eik ,

where {Hi0 , Hi1 , . . . , Hik} is a circuit of the underlying matroid for A.

Salvetti [12] showed that we can get a stronger result for the case where A is a
complexified real arrangement. We first require the following definition.

Definition 2.16 Let Cov be the covectors of an oriented matroid. Then a tope is
a maximal element of Cov.

The Salvetti poset for Cov, denoted Sal is comprised of elements (C, T ) where T
is a tope of Cov, and C ∈ Cov with C ≤ T . We define (C, T ) ≤ (C ′, T ′) if C ′ ≤ C
and C ′ ◦ T = T ′. The Salvetti complex is the geometric realization |Sal|.

For A a real hyperplane arrangement, we will use the notation Sal(A) to indicate
the Salvetti poset associated with Cov(A).

The remainder of this section is devoted to a sketch of the proof of the following
theorem.

Theorem 2.17 ([12]) Let A be a real arrangement and Cov(A) be the associated
oriented matroid, with Salvetti poset Sal(A). Then M(AC) ' |Sal(A)|.

First we require defining the following definition.

Definition 2.18 Let U be an open cover of a topological space X. Then the nerve
of U , denoted N(U) is the simplicial complex consisting of all {U1, U2, . . . , Un} ⊆ U
where

n⋂
j=1

Uj 6= ∅.

Lemma 2.19 Let U be an open cover of contractible sets of A ⊆ K` where K = R

or C such that for {U1, U2, . . . , Un} ⊆ U having nonempty intersection,
n⋂

j=1

Uj is

contractible. Then N(U) ' A.

The proof of Theorem 2.17 amounts to finding an open covering of M(AC) of
contractible sets whose nerve is isomorphic as simplicial complexes to Sal(A).
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H1

H2

H3

(0,+,+) (+,+,+)

(+,0,+)

(+,-,+)

(+,-,0)(+,-,-)(0,-,-)
(-,-,-)

(-,0,-)

(-,+,-)

(-,+,0) (-,+,+)

Figure 2.4: Geometric representation of Cov(A).

Let A be a real hyperplane arrangement in R` with defining matrix B(A) and
underlying oriented matroid Cov(A). For each C ∈ Cov(A)−{0} we associate the
semiopen cone XC = {x ∈ R` | sgn(B(A)x) = C}. Then as in Figure 2.4, it’s clear
that these XC ’s partition R` − {0}.

We require the following definitions.

Definition 2.20 Let ∆ = (V , τ) be a simplicial complex with v ∈ V . Then the star
of v, denoted st(v), is the set

st(v) := {|σ| | v ∈ σ ∈ τ}.

For C ∈ Cov(A) we will use notation X∗
C := {x ∈ R` | sgn(B(A)x) ∈ st(C)}.

Recall that for X ∈ L(A), AX is the arrangement of all hyperplanes H ≤ X.
From this we define TX for T a tope in Cov(A) as the component in M(AX) which

contains x. For example, in the arrangement A defined by

 1 0
0 1
1 1

, we have L(A)



25

is the lattice

0

H1

{{{{{{{{
H2 H3

CCCCCCCC

V

{{{{{{{{

CCCCCCCC

Then AH2 is simply the arrangement {H2} (with H2 being the hyperplane defined
by y = 0). Then for T = (+,+,+), we have TH2 is simply the upper half plane of
R2. We are now ready to define our open covering of M(AC).

For (C, T ) ∈ Sal(A), we can prove that the set X∗
C + iTC is indeed a subset of

M(AC) that is clearly contractible. So define open sets U(C, T ) for (C, T ) ∈ Sal(A)
as

U(C, T ) :=

{
R` + iT if C = 0
X∗

C + iTC if C 6= 0

Then U = {U(C, T ) | (C, T ) ∈ Sal(A)} is indeed an open covering of M(AC) with
N(U) ∼= Sal(A). It can be proven to that every nonempty intersection of open sets
contained in U is also contractible, so by Lemma 2.19, we have that M(AC) ' |SalA|
as desired.



Chapter 3

Complex Hyperplane
Arrangements

3.1 Complex Oriented Matroids

For this section we present the concept of complex oriented matroids found in Biss
[2]. The idea is to generalize the idea of oriented matroids as seen in Definition 1.20
into one that relates more to the complex plane. For this recall the poset I with
ground set {0,+,−} and order relations

+ −

0

��������

????????

We extend this to I2 canonically so we have Hasse diagram

(+,+)

QQQQQQQQQQQQQ
(−,+)

RRRRRRRRRRRRRR (−,−)

QQQQQQQQQQQQ
(+,−)

ddddddddddddddddddddddddddddddddddddddddddddddddddd

(+, 0)

VVVVVVVVVVVVVVVVVVVVVVVVV (0,+)

EE
EE

EE
EE

E
(−, 0)

yy
yy

yy
yy

y
(−,−)

hhhhhhhhhhhhhhhhhhhhhhhhh

0

In this section we are interested in elements X, Y ∈ (I2)n. We define X ◦ Y the
same as in Definition 1.18 by identifying (I2)n with I2n.

Definition 3.1 Let (a, b) ∈ I2. Then define i(a, b) = (−b, a). For X ∈ (I2)n, define
iX ∈ (I2)n as (iX)j = iXj.
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Note that for X ∈ (I2)n, i(iX) = −X. From this we can define a group action
of 〈i〉 ∼= Z4 on (I2)n. Also, we will sometimes identify 〈i〉 with

〈(0,+)〉 = {(+, 0), (0,+), (−, 0), (0,−)}

with multiplication operation defined by (0,+)σ = iσ. We call 〈(0,+)〉 the set of
monomials in I2.

Before we can define a complex oriented matroid, we need one more concept
Recall from section 1.3, the function sgn : C → I2 is defined as sgn(x + iy) =

(sgn(x), sgn(y)) for x, y ∈ R. We extend this to a function sgn : Cn → (I2)n

based on the mapping sgn(z1, z2, . . . , zn) = (sgn(z1), sgn(z2), . . . , sgn(zn)). We also
require the following operation of (I2)n.

Definition 3.2 Let σ, τ ∈ I2. Then the set of possible values for σ + τ is

{sgn(z + w) | z, w ∈ C, sgn(z) = σ, sgn(w) = τ}.

We say σ + τ is undetermined if the set of possible sums has more than one
element.

Let σ = (+,−) and τ = (0,−). Then the set of possible values for σ + τ is the
singleton set {(+,−)}. On the other hand, if σ = (+,−) and τ = (−, 0) then we
have the set of possible values of σ + τ is {(+,−), (0,−), (−,−)} and thus σ + τ is
undetermined. In general, for σ = (a, b) and τ = (c, d), the sum σ+τ is undetermined
if and only if a = −c 6= 0 or b = −d 6= 0. Otherwise the only possible value for σ+ τ
is σ ◦ τ . We are now ready for the definition of a complex oriented matroid.

Definition 3.3 A complex oriented matroid is a set of covectors Cov ⊆ (I2)n such
that

(0) 0 ∈ Cov,

(1) if X ∈ Cov then iX ∈ Cov,

(2) if X, Y ∈ Cov then X ◦ Y ∈ Cov,

(3) if X, Y ∈ Cov with Xj + Yj undetermined, and σ a possible value for Xj + Yj

where σ 6= Xj, Yj, then there is a Z ∈ Cov with Zj = σ and for each k, Zk is
a possible value of Xk + Yk.
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Remark 3.4 It is clear that axioms (0) and (2) above correspond to (0) and (2) in
Definition 1.20. One should note that (3) above does in fact correspond to (3) in
Definition 1.20. In fact if we were to replace (3) in Definition 1.20 with (3) above, it
would result in an equivalent definition. Indeed, for X, Y ∈ In we’d have Xj + Yj is
undetermined if and only if Xj = −Yj 6= 0, and the only possible value of Xj + Yj

not equal to Xj or Yj is 0. Furthermore, for each i, the only possible value of Xi +Yi

is (X ◦ Y )i if {Xi, Yi} 6= {+,−}, otherwise the possible values of Xi + Yi are all of
{0,+,−}.

Furthermore, by (1) above, for each X ∈ Cov defining a complex oriented ma-
troid, −X ∈ Cov. Thus every complex oriented matroid in (I2)n is an oriented
matroid over the set {0,+,−}2n. But the converse is not true, as for an oriented
matroid over {0,+,−}2n, if X ∈ Cov then iX need not also be in Cov.

We are now ready to prove the parallel to Theorem 1.23.

Theorem 3.5 Let A be a hyperplane arrangement in C` with defining matrix B(A).
Then define

Cov(A) := {sgn(B(A)z) | z ∈ C`}.

Then Cov(A) is a complex oriented matroid.

Proof Let B(A) be the matrix 
F1

F2
...
Fn

 .

Note that the mappings Re : C → R and Im : C → R are R-linear functionals of C.
Then for each Fj ∈ B(A), Re◦Fj and Im◦Fj define R-linear functionals of C` ∼=R R2`.
And furthermore, for z ∈ C`, sgn(Fj(z)) = (sgn(Re ◦F (z)), sgn(Im◦F (z))). Then
define a real hyperplane arrangement A′ over R2` by

B(A′) =



Re ◦ F1

Im ◦ F1

Re ◦ F2

Im ◦ F2
...

Re ◦ Fn

Im ◦ Fn


(3.1)
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Figure 3.1: dA′
C

with Cov(A) = Cov(A′) under the identification (I2)n with I2n. So by Theo-
rem 1.20 and Remark 3.4 it follows that (0),(2) and (3) all hold for Cov(A).

For (1), let X ∈ Cov(A), and z ∈ C` with sgn(B(A)z) = X. Then let Fj be a
row in B(A), and sgn(Fj(z)) = (a, b) ∈ I2. Then Fj(z) = x + iy with sgn(x) = a
and sgn(y) = b. Then Fj(iz) = iFj(z) = i(x + iy) = −y + ix. Thus sgn(Fj(iz)) =
sgn(−y + ix) = (−b, a) = isgn(Fj(z)). Thus for X ∈ Cov(A), iX ∈ Cov(A), so
Cov(A) is indeed a complex oriented matroid.

In general, for a hyperplane arrangement A in C` with n hyperplanes, we define
A′ as the arrangement of 2n hyperplanes in R2` similarly as in (3.1). For example,

let AC be the complexification of the hyperplane arrangement defined by

 1 0
0 1
1 1

.

Then dA′
C as a subset of R3 is displayed in Figure 3.1.

One thing that this formalization of A′ allows is for an easy method of finding
the complex oriented matroid of a complexified real hyperplane arrangement.

Let X, Y ∈ (I2)n where for each j, Xj + Yj is not undetermined. Then define
X + Y ∈ (I2)n is defined where (X + Y )j is the unique possible sum of Xj + Yj. In
this case, we’ll say that X + Y is a well defined sum. Furthermore, we will identify
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elements of In with elements of (I2)n under the mapping Xj 7→ (Xj, 0), so that in
particular, for X, Y ∈ In, the sum X+ iY is well defined in (I2)n. We are now ready
for the following proposition.

Proposition 3.6 Let A be a real hyperplane arrangement with defining matrix B(A),
and AC be the complexified arrangement with the same defining matrix. Then

Cov(AC) = Cov(A) + iCov(A)

where Cov(A) + iCov(A) := {X + iY | X,Y ∈ Cov(A)}.

Proof Let X1 + iX2 ∈ Cov(A) + iCov(A), and let x1,x2 ∈ R` ⊆ C` such that
sgn(B(A)x1) = X1 and sgn(B(A)x2) = X2. Then for each Fj a row of B(A),
sgn(Fj(x1 + ix2)) = (sgn(Re(Fj(x1 + ix2))), sgn(Im(Fj(x1 + ix2)))). But since Fj is
the complexification of a real linear functional, and x1,x2 ∈ R` we have Re(Fj(x +
ix2) = Fj(x1) and Im(Fj(x1 + ix2)) = Fj(x2). So we have sgn(Fj(x1 + ix2)) =
(sgn(Fj(x1)), sgn(Fj(x2))) = (X1 +iX2)j. Thus Cov(AC) 3 sgn(B(A)(x1 +ix2)) =
X1 + iX2, so we have Cov(A) + iCov(A) ⊆ Cov(AC).

For the reverse inclusion we have B(AC) = B(A), so consider B(A′
C) as defined

in (3.1). Then note for each Fj, we have for x ∈ C` Re ◦Fj(x) = Im ◦Fj(ix) as real
linear functionals. And furthermore, for x ∈ R` we have Im◦Fj(x) = Re◦Fj(ix) = 0.
Let X ∈ Cov(AC), and let x ∈ C` with sgn(B(AC)x) = X, and let x1 = Re(x) and
x2 = Im(x). Then we have for each j

Xj = sgn(Fj(x))

= sgn(Fj(x1 + ix2)

= sgn(Fj(x1) + Fj(ix2))

= sgn(Re ◦ Fj(x1) + iIm ◦ Fj(ix))

= sgn(Fj(x1) + iFj(x2)) = X1 + iX2.

Thus we have Cov(AC) ⊆ Cov(A) + iCov(A), thus completing the proof.

The following sublattices of Covop will prove to be of considerable use.

Definition 3.7 Let Cov ⊆ (I2)n be a complex oriented matroid. Then define the
lattice Cov∗ as the set {X ∈ Cov | Xj 6= (0, 0) for all j}, with order relation X ≤ Y
in Cov∗ if Y ≤ X in Cov.

Let Cov+ be a sublattice of Cov∗ comprise of elements {X ∈ Cov∗ | X1 =
(+, 0)}.

Let Cov0 be the sublattice of Cov with at least one entry is 0, i.e. whose
underlying set is Cov −Cov∗.
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In the case where Cov = Cov(A) for some complex arrangement A, we use the
notation Cov∗(A) and Cov+(A).

Remark 3.8 As with unoriented matroids (see Remark 1.12), there are multiple
equivalent axiom systems for both oriented and complex oriented matroids. One
useful system is by defining cocircuits. Under our axiom system for covectors, a
cocircuit of a (complex) oriented matroid is a minimal, non-zero covector. But the
set of cocircuits also determines a (complex) oriented matroid.

For a (real) oriented matroid, the cocircuit axioms on a set C ⊆ In are

(0) 0 /∈ C.

(1) If X ∈ C, then −X ∈ C.

(2) If X, Y ∈ C such that

{j | 1 ≤ j ≤ n,Xj = 0} = {j | 1 ≤ j ≤ n, Yj = 0}

then X = ±Y .

(3) If X, Y ∈ C with X 6= −Y , and Xj = −Yj 6= 0. Then there is some Z ∈ C
such that Zj = 0 and for {Xi, Yi} 6= {+,−}, Zi ∈ {0, (X ◦ Y )i}.

Similarly for a complex oriented matroid, the cocircuit axioms on a set C′ ⊆ (I2)n

are

(0′) 0 /∈ C′.

(1′) If X ∈ C′, then iX ∈ C′.

(2′) If X,Y ∈ C′ such that

{j | 1 ≤ j ≤ n,Re(Xj) = 0} = {j | 1 ≤ j ≤ n,Re(Yj) = 0}

and
{j | 1 ≤ j ≤ n, Im(Xj) = 0} = {j | 1 ≤ j ≤ n, Im(Yj) = 0}

then X = ±Y . Similarly if

{j | 1 ≤ j ≤ n,Re(Xj) = 0} = {j | 1 ≤ j ≤ n, Im(Yj) = 0}

and
{j | 1 ≤ j ≤ n, Im(Xj) = 0} = {j | 1 ≤ j ≤ n,Re(Yj) = 0}

then X = ±iY .
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(3′) If X, Y ∈ C′ with X 6= −Y , and Xj + Yj is undetermined, then there is some
Z ∈ C′ such that Zi is a possible sum of Xi + Yi and Zj is a monomial that is
not equal to Xj or Yj.

It is a fact that, given a (complex) oriented matroid, the minimal non-zero cov-
ectors satisfy either the axioms for C or C′ respectively. Similarly, given a set C or
C′, then the set

{X1 ◦X2 ◦ · · · ◦Xk | X1, X2, . . . , Xk ∈ C(or C′)} ∪ {0}

defines Cov that satisfies Defintion 1.20 or 3.3 respectively. For proofs see [4] for the
case of oriented matroids, and Biss [2] for the case of complex oriented matroids.

3.2 Björner-Ziegler Matroids and Stratifications

This section shows that complex oriented matroids, introduced in section 1, provide
a combinatorial topology for the complement of complex hyperplane arrangements.
This will follow methods similar to Björner and Ziegler in [5], and all theorems in
this section due to said paper, with interpretation so to fit into the notation of this
thesis.

We begin by defining Björner and Ziegler’s concept of a complex oriented matroid.
We begin with a poset J whose underlying set is {0,+,−, i, j} and defined by the
following Hasse diagram.

i j

+

pppppppppppppp −

NNNNNNNNNNNNNNN

0

��������

????????

From this we define a sign function sgn′ : C → J as

sgn′(x+ iy) =


i if y > 0
j if y < 0
sgn(x) if y = 0

Similarly as with sgn, we may extend sgn′ as a function Cn → J n under the mapping

sgn′(z1, z2, . . . , zn) = (sgn′(z1), sgn
′(z2), . . . , sgn

′(zn)).
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From this, if A is an arrangement in C` we define the Björner-Ziegler matroid (or
BZ matroid) of A as a set Cov′(A) := {sgn′(B(A)z) | z ∈ C`}. Ziegler defines an
abstract axiom system for BZ matroids in [17], although we will not use it here.

Similarly as with complex oriented matroids we define Cov′∗(A) as the set

{X ∈ Cov′(A) | Xj 6= 0 for all j},

with X ≤ Y in Cov′∗(A) if and only if X ≥ Y in Cov′(A). We also define Cov′0(A)
as the set

{X ∈ Cov′(A) | Xj = 0 for some j} = Cov′(A)−Cov′∗(A)

with order same as in Cov′(A).
In this section we deal with regular cell complexes - a generalization of simplicial

complexes explored in Section 2.2. First we define a CW complex. For simplicity we
restrict our attention to the finite case. This definition is taken from Vick [14]. We
require the following topological tool first.

Definition 3.9 Let X and Y be topological spaces with X ∩ Y = ∅, and let X ∪ Y
be the disjoint union of X and Y with the weak topology. Let A ⊆ X and let
f : A → Y be a continuous function. Then the space obtained by attaching X to Y
via f is the space (X ∪Y )/∼ where ∼ is the equivalence relationship induced by the
relation x ∼ f(x) for all x ∈ A.

Definition 3.10 A finite CW complex is a Hausdorff space Γ and a sequence Γ0 ⊆
Γ1 ⊆ · · · ⊆ Γn = Γ such that

(1) Γ0 is a finite set of points,

(2) Γk is homeomorphic to a space obtained by attaching a finite number of k-cells
to Γk−1 along their boundaries via some continuous maps.

Γ is a regular finite CW complex if the attaching functions used in (2) are all
injective.

In this section we will only need to use finite CW complexes, although some of
the results in this section are true for arbitrary CW complexes.

For a regular CW complex Γ, let P be its face poset, that is the set of all closed
faces of Γ ordered by inclusion. Then it is a rather happy fact that Γ ∼= |P|, where
|P| is the geometric realization of the order complex of P (see Definition 2.11). Also,
though, it is a fact that a regular CW complex is determined up to homeomorphism
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by it face poset, and for this reason, in much of the literature, |P| is defined as the
CW complex who has face poset P .

Either interpretation of |P| can be used in this section. However, although we
can define a simplicial complex on any finite poset, not every finite poset is the face
poset of some CW complex. For example, if P is the poset with Hasse diagram

1̂

a

11111

c

��������

b

0̂

�����

*********

then P is not the poset of any CW complex, so that the only definition of |P| is the
geometric realization of the order complex of P .

Definition 3.11 A regular CW complex is called a piecewise linear complex, or a PL
complex, if it is homeomorphic to a ball and some triangulation of it has a piecewise
linear homeomorphism with a simplex.

The use of PL complexes is the fact that, if Γ is a PL complex with P the face
poset, then Pop is the face poset of a PL complex Γ0. It is not always the case,
though, for an arbitrary CW complex Γ with face poset P that Pop defines a CW
complex.

Now we turn our attention to combinatorial aspects of Cov(A) and Cov′(A). A
cone K in R` is called relative-open if it is open in the linear span of K.

Definition 3.12 A combinatorial stratification K of a complex arrangement A in
C` is a partition of R2` ∼= C` into finitely many subsets, called strata, that have the
following properties:

(1) the strata are relative-open convex cones,

(2) the intersections of the strata with unit sphere S2`−1 in C` are the open cells
of a regular CW-decomposition Γ of S2`−1,

(3) every hyperplane H ∈ A is a union of strata - i.e. H ∩ S2`−1 is a subcomplex
of Γ.
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From here we have the following.

Definition 3.13 Let A be an arrangement in C` with defining matrix B(A), with
complex oriented matroid Cov(A) and BZ matroid Cov′(A). Then for X ∈ Cov(A)
we define

KX := {z ∈ C` | sgn(B(A)z) = X},

and for X ′ ∈ Cov′(A) we define

KX′ := {z ∈ C` | sgn′(B(A)z) = X ′}.

Then the matroid stratification of C` determined by A is the set

KA := {KX | X ∈ Cov(A)},

and the BZ stratification of C` determined by A is the set

K′
A := {KX′ | X ′ ∈ Cov′(A)}.

Theorem 3.14 Let A be an essential arrangement in C` with defining matrix B(A).
Then the matroid stratification KA and BZ stratification K′

A are both combinatorial.

Proof We begin by considering the trivial case, where B(A) is the ` × ` identity
matrix, so that A = {H1, H2, . . . , H`} with Hj defined by zj = 0. Then Cov(A) =
I` and Cov′(A) = J `. Thus KA and K′

A are clearly combinatorial stratifications
corresponding to the CW decomposition of S2`−1 by the coordinate subspaces of R2`

in the case of KA, and by coordinate subspaces corresponding to odd indices in the
case of K′

A.
Let s = sgn or sgn′. Consider the function B : C` → Cn defined by z 7→ B(A)z.

Then this is clearly injective since n > ` (because A is essential), so that it embeds
C` into Cn. Let V = B(C`) ⊆ Cn, and let {H ′

1, H
′
2, . . . , H

′
n} be the arrangement

whose defining matrix is the n × n identity matrix. Then we have that for H ∈ A
that B(H) = V ∩H. Then the arrangement A = {H1, H2, . . . , Hn} is isomorphic to
the arrangment {V ∩H ′

1, V ∩H ′
2, . . . , V ∩H ′

n} in V , so that, by above, we have that
KA and K′

A are combinatorial stratifications. Indeed, the intersection of a relatively
open convex cone in Cn with V is a convex relatively open cone in V . Moreover
these cones give rise to a CW-structure on S2n−1 ∩ V ∼= S2`−1.

In fact, it’s true that KA and K′
A are PL complexes, as seen in the following

theorem.



36

Lemma 3.15 Let Γ be an induced decomposition of S2`−1 from KA or K′
A for A a

complex arrangement in C` with defining matrix B(A). Then Γ is piecewise linear
complex.

Proof Clearly Γ ∼= S2`−1. Let B(A) be the matrix
F1

F2
...
Fn

 .

Then KA is the stratification of R2` determined by the arrangement

{H1, H
′
1, H2, H

′
2, . . . , Hn, H

′
n}

where Hj is determined by the equation Re(Fj(z)) = 0 and H ′
j is determined

by the equation Im(Fj(z)) = 0. Similarly K′
A is determined by the arrangement

{H1, H2, . . . , Hn} in R2` where Hj is determined by the equation Re(Fj(z)) = 0.
Thus both KA and K′

A are stratifications based on real arrangements, so that they
are polytopal and thus piecewise linear.

The benefit of having a PL complex is seen in the following. First we require the
following lemma.

Lemma 3.16 Let P be a finite poset and let {P ′,P ′′} be a partition of P. Then
|(P ′)op| is a strong deformation retract of |P| − |P ′′|.

Proposition 3.17 Let Γ be a PL complex homeomorphic to the k-sphere with face
poset P. And let P0 ⊆ P be the face poset of a subcomplex Γ0 ⊆ Γ. Then let
Q = P − P0 with reverse order of P. Then |Q| ' Γ− Γ0.

Proof The fact that Γ is piecewise linear means that there exists Γop, the CW
complex whose face poset is P with reverse order. Thus Q is the face poset of some
subcomplex Γ∗ of Γop.

So, as a consequence of Lemma 3.16 we have |Q| ∼= Γ∗ is homotopy equivalent to
|P0| ∼= Γ0.

From here we require the following definition.
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Definition 3.18 Let A be an arrangement in C` with defining matrix B(A) and
complex oriented matroid Cov(A) and BZ matroid Cov′(A). Then K0

A and K∗
A are

defined as

K0
A := {KX | X ∈ Cov0(A)− {0}}; K∗

A := {KX | X ∈ Cov∗(A)}.

Similarly K′0
A and K′∗

A are defined as

K′0
A := {KX′ | X ′ ∈ Cov′0(A)− {0}}; K′∗

A := {KX′ | X ′ ∈ Cov′∗(A)}.

Note that both K0
A and K′0

A are decomposition of S2`−1∩
⋃

H∈A

H, while K∗
A and K′∗

A

are stratifications of M(A), which induce decompositions on M(A) ∩ S2`−1. From
this, Lemma 3.15 and Proposition 3.17 we get the following theorem.

Theorem 3.19 Let A be an arrangement in C` with defining matrix B(A), with
complex oriented matroid Cov(A) and BZ matroid Cov′(A), and let K = KA or
K′
A. Then

(i) K0
A and K′0

A are the face poset of a subcomplex of Γ = K ∩ S2`−1, which is

homeomorphic to S2`−1 ∩
⋃

H∈A

H.

(ii) (K∗
A)op and (K′∗

A)op are homotopy equivalent to M(A).

Corollary 3.20 Let A be an arrangement in C` with complex oriented matroid
Cov(A) and BZ matroid Cov′(A). Then |Cov′∗(A)| ' |Cov∗(A)| 'M(A).



Chapter 4

More on the Combinatorial
Structure of Complex
Arrangements

4.1 Real 2-Arrangements

This section shows there is a significant difference between complex hyperplane ar-
rangements and real codimension-2 subspace arrangements. Unless otherwise speci-
fied, all theorems in this section are due to Ziegler [16].

To begin, we need the following generalization of complex hyperplane arrange-
ments.

Definition 4.1 A codimension-2 subspace of R2` is the kernel of an onto linear
transformation F : R2` → R2.

A real 2-arrangement is a finite set B = {H1, H2, . . . , Hn} of codimension-2 sub-

spaces such that for any subset B ⊆ B, codim

(⋂
H∈B

H

)
is even.

Note that any such function F : R2` → R2 can be viewed as the matrix

(
F1

F2

)
where F1, F2 : R2` → R are linear functionals. Then the codimension-2 subspace
is in fact the space kerF1 ∩ kerF2. Using similar proofs as in Section 1.3 we can
prove that any real 2-arrangement B defines an underlying matroid defined as in
Theorem 1.9, and that L(B) the intersection lattice is a geometric lattice with height
function η(A) = 1

2
codim(A). Similarly as with hyperplane arrangements we define

M(B) as the complement of the 2-arrangement B.

38
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The major difference between real 2-arrangements and complex arrangements, as
this section shows, is the cohomology algebra of the complement of real 2-arrangements
is not determined by its combinatorial structure.

To begin with, Björner and Ziegler in [5] show that the cohomology algebra of
the complement of a real 2-arrangement has the same generator set as a complex
arrangement. This fact and Theorem 2.15 helps to define a structure on the cohomol-
ogy algebra of the complement of a real 2-arrangement, summarized in the following
theorem.

Theorem 4.2 Let B = {H1, H2, . . . , Hn} be a 2-arrangement in R2`, with Hj =
kerFj,1∩kerFj,2, Fj,1, Fj,2 : R2` → R linear functionals. Then the integral cohomology
algebra of M(B) is generated by the 1-dimensional classes

ω(Fj) :=
1

2π

−Fj,2dFj,1 + Fj,1dFj,2

(Fj,1)2 + (Fj,2)2
,

for 1 ≤ j ≤ n. It has a presentation of the form

0 → I → Λ∗Zn π→ iH∗(M(B); Z) → 0,

defined by π(ej) := [ω(Fj)] where {e1, e2, . . . , en} denotes a basis for Zn. The relation
ideal I is generated by elements of the form

k∑
j=0

εj · ea0 ∧ · · · ∧ êaj
∧ · · · ∧ eak

,

for the circuits {Ha0 , . . . , Hak
} of the underlying matroid of B, with εj = ±1.

One may note that unlike in Theorem 2.15 there is no combinatorial method for
determining the exact values of the εj’s. However Ziegler gives the following method
for determining the exact cohomology algebra for a given 2-arrangment.

Theorem 4.3 Let B = {H1, H2, . . . , Hn} be a 2-arrangement in R2`, with Fi =(
Fj,1

Fj,2

)
being the surjective transformation such that Hj = kerFj. Then for each

Hj associate the differential form

ω(Fj) :=
1

2π

−Fj,2dFj,1 + Fj,1dFj,2

(Fj,1)2 + (Fj,2)2
,

which is a closed form on R2`−Hj that is normalized to have residue ±1 around Hj.
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Let {Hi0 , Hi1 , . . . , Hik} be a circuit in the underlying matroid of B, with two real
linear dependencies of the form

k∑
j=0

αjFij ,1 + βjFij ,2 = 0,

k∑
j=0

γjFij ,1 + δjFij ,2 = 0,

with α0 = δ0 = −1, β0 = γ0 = 0. Then these induce the relation

k∑
j=0

(−1)jsgn

∣∣∣∣ αj βj

γj δj

∣∣∣∣ω(Fi1) ∧ · · · ∧ ω̂(Fij) ∧ · · · ∧ ω(Fik) = 0

in the cohomology algebra H∗(M(B); Z).

Proof We have by Theorem 4.2 that the H∗(M(A); Z) is generated by the elements
ω(Fj) above. Furthermore, by Definition 4.1, if C = {Hi0 , Hi1 , . . . , Hik} is a circuit
in the underlying matroid for B, then the set {Fi1,1, Fi1,2, Fi2,1, Fi2,2, . . . , Fik,1, Fik,2}
is linearly independent. However, since any intersection of subspaces must have even
codimension, adding either Fi0,1 or Fi0,2 to the set will make it linearly dependent.
So the real linear dependencies described above do exist.

Now we construct coordinates xj and yj for 1 ≤ j ≤ k so that

xj = αjFj,1 + βjFj,2

yj = γjFj,1 + δjFj,2.

Then by the even codimension condition we have

∣∣∣∣ αj βj

γj δj

∣∣∣∣ 6= 0. Then by computing

residues we have

ω(xj, yj) :=
1

2π

−yjdxj + xjdyj

x2
j + y2

j

∼ sgn

∣∣∣∣ αj βj

γj δj

∣∣∣∣ · ω(Fj),

where a ∼ b means a − b is an exact form. Now, introduce complex coordinates
zj = xj + iyj, then Hi0 is the solution to the equation z1 + z2 + · · ·+ zk = 0, and Hij

is the solution to zj = 0 for 1 ≤ j ≤ k. Then C is linearly equivalent to a complex
arrangement in Ck. Thus we have

ωj :=
1

2πi

dzj

zj

∼ ω(xj, yj) ∼ sgn

∣∣∣∣ αj βj

γj δj

∣∣∣∣ · ω(Fj).
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Thus since C is a complex arrangement, we have by Theorem 2.15 we have

k∑
j=0

(−1)jω0 ∧ · · · ∧ ω̂j ∧ · · · ∧ ωk = 0

in H∗(M(C); Z), which translates to the formula above.

Note that every complex arrangement in C` is a real 2-arrangement in R2`. We
now turn our attention to 2-arrangements in R4 ∼= C2. We use coordinates (u, v, x, y)
for elements of R4, and shorten this to complex coordinates (w, z) under the identi-
fication w = u+ iv and z = x+ iy.

Note, for a real 2-arrangement B = {H1, H2, . . . , Hn}, without loss of generality
we can assume that H1 is defined by w = 0, H2 is defined by z = 0 and H3 is defined
by w = z.

We now define two 2-arrangements A and B in R4. A is the complex arrangement

with defining matrix


1 0
0 1
1 1
1 2

. In other words, we have

A :


H1 = {(w, z) ∈ R4 | w = 0}
H2 = {(w, z) ∈ R4 | z = 0}
H3 = {(w, z) ∈ R4 | z = w}
H4 = {(w, z) ∈ R4 | z = 2w}

Now define B as the 2-arrangement in R4 with

B :


H1 = {(w, z) ∈ R4 | w = 0}
H2 = {(w, z) ∈ R4 | z = 0}
H3 = {(w, z) ∈ R4 | z = w}
H4 = {(w, z) ∈ R4 | z = 2w}

Then A and B have isomorphic underlying matroids U2,4, so that the circuits of either
arrangement are the subsets of size three. Then since A is a complex arrangement
we have by Theorem 2.15 we have

H∗(M(A); Z) ∼= Λ∗Z4/

〈 +e1e2 − e1e3 + e2e3
+e1e2 − e1e4 + e2e4
+e1e3 − e1e4 + e3e4
+e2e3 − e2e4 + e3e4

〉
.
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Meanwhile, by Theorem 4.3 we can compute

H∗(M(B); Z) ∼= Λ∗Z4/

〈 +e1e2 − e1e3 + e2e3
+e1e2 + e1e4 + e2e4
−e1e3 − e1e4 + e3e4
+e2e3 − e2e4 − e3e4

〉
.

In both cases the fourth relationship can be derived from the first three. The fact
that these are nonisomorphic rings is proven in the following.

Theorem 4.4 The cohomology algebras H∗(M(A); Z) and H∗(M(B); Z) are not iso-
morphic as graded Z-algebras.

Proof Let A be one of the two algebras described above, and let A1 be the 1-
dimensional part. Then A has a presentation of the form

0 → I → Λ∗A1 → A→ 0,

where I is a graded ideal. We have I1 = {0} by construction, while I2 has rank 3.
We consider the map

κ : I2 ⊗ I2 → Λ4A1

induced by multiplication in Λ∗A1. In this case, we have A1 ∼= Z4, so Λ4A1 ∼= Z, and
κ defines a symmetric bilinear form on I2.

By direct calculation we have κ vanishes identically on H∗(M(A); Z). However
for H∗(M(B); Z) the bilinear form κ has rank 2. Indeed, with respect to the basis
{e1e2 − e1e3 + e2e3, e1e2 + e1e4 + e2e4, e1e3 + e1e4 − e3e4} of I2, it is represented by
the matrix  0 2 0

2 0 −2
0 −2 0

 .

Thus we have H∗(M(A); Q) 6∼= H∗(M(B); Q).

4.2 Isomorphism Classes of Complex Oriented Matroids

Recall that for A a complex hyperplane arrangement in C` with defining matrix
B(A) defined as 

F1

F2
...
Fn

 ,
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we define A′ associated with B(A) as the hyperplane arrangement in R2` with defin-
ing matrix 

Re ◦ F1

Im ◦ F1

Re ◦ F2

Im ◦ F2
...

Re ◦ Fn

Im ◦ Fn


where the oriented matroid for A′ is equivalent to the complex oriented matroid for
A.

Now consider againA1
C the complex hyperplane arrangement defined by

 1 0
0 1
1 1

.

Then we have A1′

C is defined with the matrix
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1

 .

However, A1
C can also be defined with the matrix

 1 + i 0
0 1
1 1

. But then we have

A1′

C is defined with the matrix 
1 −1 0 0
1 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1


which in fact defines a completely different hyperplane arrangement in R4. In fact,
in the first case, the underlying oriented matroid has 12 cocircuits (see Table 4.1),
whereas in the second case the underlying matroid has 28 cocircuits, so that we
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B(A) cocircuits of Cov(A) 1 0
0 1
1 1

 (00,+0,+0), (00, 0+, 0+), (00,−0,−0), (00, 0−, 0−),
(+0, 00,+0), (0+, 00, 0+), (−0, 00,−0), (0−, 00, 0−),
(+0,−0, 00), (0+, 0−, 00), (−0,+0, 00), (0−, 0+, 00)

 1 + i 0
0 1
1 1


(00,+0,+0), (00, 0+, 0+), (00,−0,−0), (00, 0−, 0−),
(+0, 00,+−), (0+, 00,++), (−0, 00,−+), (0−, 00,−−),
(+0, 0+,+0), (0+,−0, 0+), (−0, 0−,−0), (0−,+0, 0−),
(+0,−0, 0−), (0+, 0−,+0), (−0,+0, 0+), (0−, 0+,−0),
(+0,−+, 00), (0+,−−, 00), (−0,+−, 00), (0−,++, 00),
(++, 00,+0), (−+, 00, 0+), (−−, 00,−0), (+−, 00, 0−),
(++,−0, 00), (−+, 0−, 00), (−−,+0, 00), (+−, 0+, 00)

Table 4.1: Cocircuit sets for nonisomorphic underlying complex oriented matroids
for A1.

have in fact two nonisomorphic underlying complex oriented matroids for the same
complex hyperplane arrangement.

We conclude that, unlike the case of real hyperplane arrangements, for a complex
hyperplane arrangement A, the structure of Cov(A) depends on choice of B(A), so
there is no equivalent to Theorem 1.24 in the complex case.

The following theorem was first proved by Salvetti [12], and again more explicitly
by Arvola [1] and is referenced by Gel′fand and Rybnikov [6].

Theorem 4.5 Let A be a complex arrangement in C` and let B(A) be a defining
matrix. Then |Cov+(A)| 'M(dA).

Proof We can assume that H1 is the hyperplane defined by z1 = 0. Then we have
M(dA) ' {x ∈M(A) | x1 ∈ R, x1 > 0} by radial retraction.

Let Q ⊆ Cov(A) be the set Cov(A)−Cov+(A). Then by Lemma 3.15 we have
Cov(A) defines a PL stratification on S2`−1, so that by Proposition 3.17, we have

|Cov+(A)| = |(Cov(A)−Q)op| ' |Cov(A)| − |Q|

But |Cov(A)| − |Q| is homeomorphic to the set {x ∈ S2`−1 | x /∈ H1, x1 > 0}, which
by above reasoning is homotopy equivalent to M(dA).

The above theorem coupled with Theorems 2.14 and 2.7 and the fact that S1 ' C∗

gives us the following.
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Corollary 4.6 Let A be a hyperplane arrangement with defining matrix B(A), and
let W be a poset such that |W| ∼= S1. Then |Cov+(A)×W| ' Cov∗(A).

Proof We have

|Cov+(A)×W| ∼= |Cov+(A)| × |W|
∼= |Cov+(A)| × S1

' M(dA)× C∗ ∼= M(A) ' |Cov∗(A)|.

In order to construct a poset W such that |W| ∼= S1 we start with the ground
set {w1, w2, . . . , wn} ∪ {wj,j+1 | 1 ≤ j ≤ n − 1} ∪ {wn,1}. All order relations are of
the form wi,j < wk if and only if k = i or k = j. This creates a poset where |W| is
exactly the boundary of an 2n-gon, which is thus homeomorphic to S1.

For example, in the case n = 4 we get W is seen in the following Hasse diagram.

w1 w2 w3 w4

w4,1

ggggggggggggggggggggggggggg w1,2

FFFFFFFF
w2,3

FFFFFFFF
w3,4

FFFFFFFF

Note that this is order isomorphic to (I2)∗ := I2 − {(0, 0)}.

(+,+) (−,+) (−,−) (+,−)

(+, 0)

ffffffffffffffffffffffffffffffff
(0,+)

JJJJJJJJJ

(−, 0)

JJJJJJJJJ

(0,−)

JJJJJJJJJ

In light on Corollary 4.6 it is natural to ask if there is an order-preserving map
Cov+(A)×W → Cov∗(A) that induces a homotopy equivalence on the realizations.
For this, the natural choice would seem to be the poset I2−{(0, 0)} above. But this
does not seem to work.

For Cov a matroid, we define Cov/〈i〉 as the equivalence classes induced from
X ∼ iX. Then for [X], [Y ] ∈ Cov/〈i〉, we can define [X] ≤ [Y ] if and only if there
is some x ∈ [X] and y ∈ [Y ] such that x ≤ y. Then it can easily be verified that this
defines a partial ordering.

A combinatorial version of the cone/decone theorem would be easy if Cov+ ∼=
Cov∗/〈i〉, or if |Cov+| ' |Cov∗/〈i〉|. But this turns out not to be the case. A counter

example is Cov(A) with B(A) =

 1 0
0 1
1 1

. Using Proposition 3.6 we can see, since
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(+0,+0) (−0,+0) (−0,−0) (0+,++) (0−,+−) (−+, 0+) (−−, 0−)

(++,++)

oooooooooooooooooooooooooooooooo
(+−,+−)

444444444444444444

xxxxxxxxxxxxxxxxxxxxxxxx
(−+,++)

444444444444444444

������������������
(−−,+−)

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

(−+,−+)

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

(−−,−−)

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

Figure 4.1: Cov+(A)

Cov(A) has 13 vectors in R2, therefore Cov(A) has 169 covectors as an arrangement
in C2. One can also compute Cov∗(A) and Cov+(A). Cov+(A) is seen in Figure 4.2.
As can be seen |Cov+(A)| has Euler characteristic -1. However Cov∗(A)/〈i〉 has 36
elements and has 3 levels in the Hasse diagram - the first level has 9 covectors, the
second has 18 covectors and the third has 9 covectors, so that the Euler characteristic
of Cov∗(A)/〈i〉 is 0, which means that |Cov+(A)| 6' |Cov∗(A)/〈i〉|.

The fact that Cov+(A) has 13 elements and Cov∗(A) has 144 elements means
that for a free group action of G on Cov∗(A), it is not the case that Cov+(A) ∼=
Cov∗(A)/G. This let us to focus on such a poset W such as in Corollary 4.6. So far
any usable order preserving mapping seems elusive.

So the question remains - given a hyperplane arrangement A in C`, is there
some choice of B(A) that gives you a complex oriented matroid Cov(A) where
Cov+(A)× (I2)∗ has a canonical mapping that yields the homotopy equivalence to
M(A)? If so, still there is a problem that there is a preferred choice of B(A).

The problem may be the nature of a sign function. In the case sgn : R → I,
sgn maps the nonzero elements of R into S0 = {1,−1} ⊆ R. But any discrete sign
function sgn : C → Σ where Σ is a set of sign vectors, does not admit such a mapping
of C∗ into S1.

So, perhaps, one way to get around the problems relating to complex oriented
matroids is to use a sign function sgn∗ : C → S1 ∪ {0} where

sgn∗(z) =

{
0 if z = 0
z/|z| if z 6= 0

This, however, feels a bit unsatisfying, as the covector lattice of a complex hyperplane
arrangement with this sign function is no longer finite, and is in fact uncountable for
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a nonempty arrangement.



Bibliography

[1] William A. Arvola. Complexified real arrangements of hyperplanes. Manuscripta
Math., 71(3):295–306, 1991.

[2] Daniel K. Biss. Oriented matroids, complex manifolds, and a combinatorial
model for BU. Adv. Math., 179(2):250–290, 2003.

[3] Anders Björner. Topological methods. In Handbook of combinatorics, Vol. 1, 2,
pages 1819–1872. Elsevier, Amsterdam, 1995.

[4] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and
Günter M. Ziegler. Oriented matroids, volume 46 of Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press, Cambridge, second
edition, 1999.

[5] Anders Björner and Günter M. Ziegler. Combinatorial stratification of complex
arrangements. J. Amer. Math. Soc., 5(1):105–149, 1992.

[6] I. M. Gel′fand and G. L. Rybnikov. Algebraic and topological invariants of
oriented matroids. Dokl. Akad. Nauk SSSR, 307(4):791–795, 1989.

[7] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge,
2002.

[8] Peter Orlik. Introduction to arrangements, volume 72 of CBMS Regional Con-
ference Series in Mathematics. Published for the Conference Board of the Math-
ematical Sciences, Washington, DC, 1989.

[9] Peter Orlik and Louis Solomon. Combinatorics and topology of complements of
hyperplanes. Invent. Math., 56(2):167–189, 1980.

[10] Peter Orlik and Hiroaki Terao. Arrangements of hyperplanes, volume 300 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, 1992.

48



49

[11] James G. Oxley. Matroid theory. Oxford Science Publications. The Clarendon
Press Oxford University Press, New York, 1992.

[12] M. Salvetti. Topology of the complement of real hyperplanes in CN . Invent.
Math., 88(3):603–618, 1987.

[13] Edwin H. Spanier. Algebraic topology. McGraw-Hill Book Co., New York, 1966.

[14] James W. Vick. Homology theory, volume 145 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1994. An introduction to algebraic
topology.

[15] James W. Walker. Canonical homeomorphisms of posets. European J. Combin.,
9(2):97–107, 1988.

[16] Günter M. Ziegler. On the difference between real and complex arrangements.
Math. Z., 212(1):1–11, 1993.

[17] Günter M. Ziegler. What is a complex matroid? Discrete Comput. Geom.,
10(3):313–348, 1993.


