
RECTANGULAR POLYOMINO SET WEAK (1,2)-ACHIEVEMENT GAMESEDGAR FISHER AND NÁNDOR SIEBENAbstrat. In a polyomino set (1,2)-ahievement game the maker and the breaker alternatelymark one and two previously unmarked ells respetively. The maker's goal is to mark a set ofells ongruent to one of a given set of polyominoes. The breaker tries to prevent the makerfrom ahieving his goal. The families of polyominoes for whih the maker has a winning strategy isdetermined up to size 4. In set ahievement games, it is natural to study in�nitely large polyominoes.This enables the onstrution of super winners that haraterize all winning families up to a ertainsize. 1. IntrodutionA retangular board is the set of ells that are the translations of the unit square [0; 1℄ � [0; 1℄by vetors of Z2. Informally, a retangular board is the in�nite hessboard. Two ells are alledadjaent if they share a ommon edge. A polyomino (or animal) is a subset of the retangularboard in whih the ells are onneted through adjaent ells. Note that we allow in�nitely manyells in a polyomino. We only onsider polyominoes up to ongruene, that is, the loation of thepolyomino on the board is not important. The number of ells of a polyomino is alled the size ofthe polyomino.In a polyomino set (p; q)-ahievement game two players alternately mark p and q previouslyunmarked ells of the board using their own olors. If p or q is not 1 then the game is often alledbiased. The player who marks a polyomino ongruent to one of a given set of �nite polyominoes winsthe game. In a weak set ahievement game the seond player (the breaker) only tries to prevent the�rst player (the maker) from ahieving one of the polyominoes. A set of �nite polyominoes is alleda winning set if the maker has a winning strategy to ahieve this set. Otherwise the set is alled alosing set. Polyomino ahievement games were introdued by Harary [6, 8, 7, 9℄. Winning strategieson retangular boards an be found in [3, 13℄. Biased games are studied in [2℄ in a more generalsetting. Biased games are needed [11℄ to apply the theory of weight funtions [1, 5℄ to unbiasedgames on in�nite boards.In this paper we study retangular weak set (1; 2)-ahievement games. Triangular unbiasedset ahievement games were studied in [4℄. Our purpose is to further develop the theory of setahievement games. We have hosen the retangular game beause the retangular board is themost intuitive. The unbiased retangular game is very omplex. To handle this di�ulty we havehosen a biased version to limit the number of winning sets. The (1; 2) game is still rih enoughto unover many of the unexpeted properties of set games. This approah also has its hallenges,sine the (1; 2) game needs new tools for �nding winning strategies.2. PreliminariesFigure 2.1 shows some polyominoes we are going to use. In this �gure, the polyominoes are instandard position. Roughly speaking, a polyomino is in standard position if its ells are as muh1991 Mathematis Subjet Classi�ation. 05B50, 91A46.Key words and phrases. ahievement games, polyomino.1
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P1;1 P2;1 P3;1 P3;2 P4;1 P4;2 P4;3 P4;4 P4;5S1 S2 S3 L2 S4 L3 T2 C2 Z2 S1Figure 2.1. All polyominoes up to size 4 together with in�nite skinny.

Figure 2.2. Two polyominoes whih are anestors of eah other.to the left and to the bottom as possible. The exat de�nition involves the lexiographi orderof the list of oordinates of the ells of the polyomino pushed against the oordinate axes in the�rst quadrant. The naming onvention omes from the ordering of the polyominoes by size and bylexiographi order of their standard position.We use speial names for several important lass of polyominoes. These names are also given inthe �gure. Sn = Pn;1 stands for the skinny polyomino of size n. Cn, Ln, Tn and Zn are hosenbeause the shape of those polyominoes is similar to the shape of letters. Note that only one endof S1 is in�nitely long.De�nition 2.1. A set of polyominoes is alled bounded if it ontains only �nite polyominoes. It isalled unbounded if it ontains at least one in�nite polyomino.Note that an in�nite set of �nite polyominoes is still alled bounded even though the size of apolyomino in the set an be arbitrarily large.De�nition 2.2. We say the polyomino P is an anestor of the polyomino Q if Q an be onstrutedfrom P by adding some (possibly none) extra ells. We use the notation P v Q. A set F ofpolyominoes is alled a family if no element of F is the anestor of another element of F .It is easy to see that the anestor relation is re�exive and transitive. It is not antisymmetri, thepolyominoes in Figure 2.2 are anestors of eah other. On the set of �nite polyominoes the relationis antisymmetri and so is a partial order.So far we have not de�ned the term winner for an unbounded set of polyominoes. An in�nitepolyomino annot be marked during a �nite game. We still want to talk about unbounded winnersto simplify the theory, even though we do not intend to play any games with unbounded sets.De�nition 2.3. Let T be an unbounded set of polyominoes. Let FT be a �nite anestor of T forall T 2 T . Then F = fFT j T 2 T g is alled a bounded restrition of T . An unbounded set ofpolyominoes is alled a winner if eah bounded restrition of the set is a winner.3. PreorderThere are two ways to make it easier to ahieve a set of polyominoes. We an make some of thepolyominoes smaller or we an inlude more polyominoes in the set. This motivates the followingde�nition.De�nition 3.1. Let S and T be sets of polyominoes. We say S is simpler than T if for all Q 2 Tthere is a P 2 S suh that P v Q. We use the notation S � T .



RECTANGULAR POLYOMINO SET WEAK (1,2)-ACHIEVEMENT GAMES 3The terminology at least and at most was used in [4℄ for what we all simpler. Note that Sis simpler then T if S is simpler to ahieve than T . It is easy to see that the simpler relation isre�exive and transitive and so is a preorder. It is also easy to see that a bounded restrition ofan unbounded set of polyominoes is simpler than the original set. The following result shows theimportane of the preorder.Proposition 3.2. Let S and T be sets of polyominoes suh that S � T . If T is a winner then sois S. If S is a loser then so is T .Proof. First assume that S and T are bounded. If T is a winner then during a game the maker isable to mark the ells of some Q 2 T . There is a P 2 S suh that P v Q, so by the time the makermarks the ells of Q he also marked the ells of P , possibly at an earlier stage.Next assume that S is bounded and T is unbounded. For eah T 2 T de�ne FT = T if T is �niteand de�ne FT to be an element of S suh that FT v T if T is in�nite. Then F = fFT j T 2 T g isa bounded restrition of T . S is simpler than F and F is a winner and so S is also a winner.Finally assume that S is unbounded. Let E be a bounded restrition of S. Then E � S � T andso E is a winner whih implies that S is a winner.The seond statement of the proposition is the ontrapositive of the �rst statement. �De�nition 3.3. Let S be a bounded set of polyominoes. The set L(S) of minimal elements of Sin the partial order is alled the legalization of S.It is lear that L(S) is a family.Proposition 3.4. Let S be a bounded set of polyominoes. S is a winner if and only if L(S) is awinner.Proof. Sine L(S) is a subset of S, we must have S � L(S). On the other hand, onsider Q 2 S. IfQ is minimal then Q 2 L(S). If Q is not minimal then there is a minimal R 2 S suh that R v Qand so R 2 L(S). This shows that S � L(S). The result now follows from Proposition 3.2. �Note that the existene of the minimal R in the proof is not guaranteed if S is unbounded.There ould be an in�nite hain Q1 w Q2 w � � � of simpler and simpler polyominoes without aminimal polyomino. This means that we annot talk about the legalization of an unbounded set ofpolyominoes.Proposition 3.4 allows us to onentrate on families instead of sets of polyominoes in order tolassify sets of �nite polyominoes as winners or losers.4. Winning families of all sizesThe exterior perimeter of a polyomino is the number of empty ells adjaent to the polyomino.The minimum exterior perimeter of the polyominoes in a �nite set F is denoted by "(F). The fullfamily Fs is the set ontaining all polyominoes of size s.Proposition 4.1. The full family Fs is a winner for s � 4. In fat the maker an win after smarks.Proof. The maker an win after s marks with the random neighbor strategy [10℄, whih requires himto plae his mark at a randomly hosen ell adjaent to one of his previous marks. The strategyworks beause "(F1) = 4, "(F2) = 6, "(F3) = 7 and "(F4) = 8 and so "(Fs) is not larger than thenumber of ells marked by the breaker, whih is 2s after s moves. �It is not hard to see that F4 remains a winner if we replae S4 by a larger skinny polyomino.
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� � �Sn+1 C2 C3 Cn
� � �T2 Z2 Z3 ZnFigure 4.1. The winner Wn.
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B(a) (b) () (d)Figure 4.2. Situations to ahieve Wn.Proposition 4.2. The family Wn = fSn+1; T2; C2; : : : ; Cn; Z2; : : : ; Zng is a winner for all n � 3.Proof. Figure 4.1 shows the polyominoes in Wn. The maker an mark one of the polyominoes inF4 = fS4; L3; T2; C2; Z2g after four marks by Proposition 4.1. If this polyomino is T2, C2 or Z2 thenthe maker ahieved Wn and we are done.First onsider the ase when the marked polyomino is S4. We show by indution that even inthis ase the maker is able to ahieve Sn+1 and win or ahieve Lk for some 4 � k � n. ConsiderFigure 4.2(a) that shows the situation before the �fth move of the maker. If the breaker has nomarks in the ells ontaining the letter A, then the maker an mark one of those ells and ahieveT2. If the breaker has no marks in the ells ontaining the letter B then the maker an mark one ofthose ells and ahieve L4. So we an assume that the eight marks of the breaker are the ells withthe letters A and B. This ompletes the base step of the indution. Now assume that we are in thesituation shown in Figure 4.2(b) where the the maker already marked Sj�1 and the small emptysquares show the marks of the breaker. The maker now an mark the ell ontaining the letter A.If the breaker does not answer by marking the two ells ontaining the letter B then the maker anmark one of these ells and ahieve Lj. On the other hand if the breaker marks these two ells thenwe are again in the situation shown in Figure 4.2(b) but the size of the polyomino Sj marked bythe maker is inreased by one. Hene the maker eventually ahieves Sn+1 or Lk.It su�es to onsider the situation shown in Figure 4.2() where the maker marked Lk after k+1marks. If the breaker has no marks in the ells ontaining the letter A, then the maker an markone of those ells and ahieve T2. If the breaker has no mark in the ell ontaining the letter B, then
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Figure 4.3. P5;6.the maker an mark that ell and ahieve Z2. If the breaker has no marks in the ells ontainingthe letter C, then the maker an mark one of those ells and ahieve Ck or Zk. So we an assumethat we are in the situation shown in Figure 4.2(d). Note that the breaker an have 2k + 2 markson the board while only 2k+1 of those marks are shown as fored moves. Without this extra mark,the maker would have two ways to �nish the game. He ould mark the ell ontaining the letter Aand mark ells to the right of his previous mark until he an make a turn up or down. He ouldalso mark the ell ontaining the letter B and mark ells below his previous mark until he make aturn left or right. An indutive argument similar to the one above shows that either way he anahieve Sn+1 without a turn or he an ahieve Cj or Zj for some 3 � j � n. The one extra markof the breaker annot ruin both of these ways to win sine the ells involved are disjoint. �Corollary 4.3. The unbounded familyW = fS1; T2g [ fCn j n � 2g [ fZn j n � 2gis a winner.Proof. The bounded restritions of W are all simpler than Wn for some n. �Corollary 4.4. The families fP2;1g, fPn;1; P3;2g for n � 3 and fP3;1; P4;4; P4;5g are winners.Proof. The �rst and the third family is simpler than W3. The seond family is simpler than Wn�1.�Note that W2 is not a family but L(W2) = fS3; C2; Z2g = fP3;1; P4;4; P4;5g is a winning familyand so W2 is a winning set.Corollary 4.5. There is a winning family of size s for all s 2 N exept for s = 4.Proof. The families in Corollary 4.4 are of size 1, 2 and 3. The family in Proposition 4.1 has size5. It is lear that W 0n =Wn [ fP5;6g is a family for n � 3 (see Figure 4.3). W 0n is a winner sine itis simpler than Wn. Sine jWnj = 2n and jW 0nj = 2n+ 1, we have a winning family of size s for alls � 6. �5. Losing familiesDe�nition 5.1. A 2-paving of the board is an irre�exive relation on the set of ells where eah ellis related to at most two other ells.Example 5.2. Figure 5.1 visualizes some 2-pavings. Related ells are onneted by a tile. Thedark ells show a fundamental set of tiles. All the tiles are translations of the dark tiles by a linearombination of the two given vetors with integer oe�ients. A 2-paving determines the followingstrategy for the breaker. In eah turn, the breaker marks the unmarked ells related to the ell lastmarked by the maker. If there are fewer than two suh ells then she uses her remaining marksrandomly.De�nition 5.3. The strategy desribed above is alled the paving strategy based on a 2-paving.
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PA PB PC PD PEFigure 5.1. 2-pavings. Eah piture shows four opies of the fundamental set of tiles.PA PB PC PD PES3 � �L2 �S4 � � � �L3 � � � �T2 � � � �C2 � � � �Z2 � � � �Figure 5.2. Polyominoes and their killer 2-pavings. S1 and S2 are not listed sinethose polyominoes are winners.Proposition 5.4. If the breaker follows the paving strategy then the maker annot mark two relatedells during a game.Proof. Suppose that it is the maker's turn and there is an empty ell  related to the ell d markedby the maker. But then ell  was empty after the maker marked ell d. So the breaker should havebeen able to use one of her two marks on ell  sine ell d is not related to more than two otherells. This is a ontradition. �This result allows the breaker to win against ertain sets of polyominoes.De�nition 5.5. If P is a 2-paving suh that every plaement of the polyomino Q on the boardontains a pair of related ells then we say that Q is killed by P. If every element of a set S ofpolyominoes is killed by a 2-paving P then we say that S is killed by P.Note that if P v Q and P is killed by a 2-paving, then Q is also killed by the same 2-paving.The following is an easy onsequene of Proposition 5.4.Proposition 5.6. A set of polyominoes killed by a 2-paving is a losing set, the breaker an win withthe paving strategy.Example 5.7. Figure 5.2 shows the polyominoes up to size 4 with their killer 2-pavings. The tablehelps deide if a family is a loser. For example fS3; C2g is a loser beause it is killed by PC .It is easy but tedious to hek that a given 2-paving in fat kills a polyomino. We used a omputerprogram to verify our hand alulations.We used another omputer program to �nd useful killer 2-pavings. This program uses baktrak-ing to pik more and more related ells to �nd a 2-paving that kills a set of polyominoes on a �niteregion of the board. The program plaes every polyomino inside the �nite region in every position
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Y1 N1;1 N1;2fS2g fS3g fL2gPB PAFigure 6.1. Charaterizing families for size 1. Killer 2-pavings are listed for losing families.that does not have a pair of related ells yet. If one of these plaements does not have two ellsthat an be made related then the program baktraks. Otherwise the program piks the plaementthat has the least number of ells that an be made related and tries to onsider every suh pairing.The program stops if the set annot be killed by a 2-paving or if a killer 2-paving is found. If a setannot be killed by a 2-paving on a �nite region then of ourse it annot be killed on the in�niteboard either. In this ase the set is alled a paving winner. The 2-pavings found by the program areoften haoti lose to the boundary of the �nite region, but in most ases a pattern or sometimesseveral patterns an be disovered in some portion of a su�iently large region.Proposition 5.8. There is a losing family of size s for all s 2N [ f1g.Proof. The families fC2; : : : ; Cs+1g and fC2; C3; : : :g are killed by PA. �Proposition 5.9. If F is a winning family then Sn 2 F for some n.Proof. If Sn is not in F for any n then fL2g � F . Hene F is a loser sine L2 is killed by PA. �Proposition 5.10. A set S ontaining polyominoes of size 5 or larger is a loser.Proof. It is easy to see that F := fS3; Z2g � S and F is killed by PB. �6. Classifiation of familiesIn this setion we �nd all winning families up to size 4. For eah suh size s we present aharaterizing winning family Ys. Then we show that a family F of size s is a winner if and only ifit is simpler then Ys. To do this we use a haraterizing olletion Ns;1; : : : ;Ns;ks of losing familiesand we show that if F is not simpler than Ys then there is a losing family in Ns;i that is simplerthan F . For size 4 families we do not have a haraterizing winner sine there are no size 4 winningfamilies. These haraterizing families are shown in Figures 6.1�6.6. Eah Yi is simpler than W ofCorollary 4.3 and so a winner. To show that the haraterizing losing families are in fat losers, weprovide killer 2-pavings in the �gures.Proposition 6.1. Y1 = fS2g, N1;1 = fS3g and N1;2 = fL2g is a haraterizing olletion ofwinners and losers for size 1 families.Proof. By [12℄, the only size 1 winners are fS1g and fS2g. Both of these are simpler than Y1. Everyother polyomino P has at least 3 ells and so either S3 or L2 must be simpler then P . �Proposition 6.2. Y2 = fS1; L2g, N2;1 = fL2g, N2;2 = fS3; C2g and N2;3 = fS3; Z2g is a hara-terizing olletion of winners and losers for size 2 families.Proof. Let F be a family of size 2. If Sn is not in F then N2;1 � F by the proof of Proposition 5.9.So we an assume that F = fSn; Qg for some n � 3. Note that if n � 2 then F annot be a family.
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Y2 N2;1 N2;2 N2;3fS1; L2g fL2g fS3; C2g fS3; Z2gPA PC PBFigure 6.2. Charaterizing families for size 2. Killer 2-pavings are listed for losing families.

Y3 N3;1 N3;2 N3;3 N3;4fS3; C2; Z2g fL2g fS3; Z2g fS3; C2; P5;10g fS4; C2; Z2gPA PB PC PDFigure 6.3. Charaterizing families for size 3. Killer 2-pavings are listed for losing families.First assume that jQj � 4. Then Q 2 fL2; L3; T2; C2; Z2g sine Si is related to Sn. If Q = L2then F � Y. If Q 2 fL3; T2g then N2;2;N2;3 � F . If Q = C2 then N2;2 � F . If Q = Z2 thenN2;3 � F .Next assume that jQj � 5. Then Q is not skinny and so there is an R 2 fL2; L3; T2; C2; Z2g suhthat R v Q. Hene fSn; Rg � F and so F is haraterized sine fSn; Rg is haraterized as we sawin the previous ase. �Corollary 6.3. The only winning size 2 families are fS1; L2g and fSn; L2g for n � 3.Proposition 6.4. Y3 = fS3; C2; Z2g, N3;1 = fL2g, N3;2 = fS3; Z2g, N3;3 = fS3; C2; P5;10g andN3;4 = fS4; C2; Z2g is a haraterizing olletion of winners and losers for size 3 families.Proof. Let F be a family of size 3. If Sn is not in F then N3;1 � F . So assume F = fSn; Q;Rgfor some n � 3. We do not have L2 2 F beause every polyomino is related to Sn or L2. ThusjQj; jRj � 4.First onsider the ase when jQj = 4 = jRj. Then fQ;Rg � fL3; T2; C2; Z2g. If fQ;Rg = fL3; T2gthen N3;2 � fS3g � F . If Q 2 fL3; T2g and R = C2 then N3;3 � fS3; C2g � F . If Q 2 fL3; T2gand R = Z2 then N3;2 � F . If fQ;Rg = fC2; Z2g then n = 3 implies F = Y3 and n � 4 impliesN3;4 � F .Next onsider the ase when jQj � 4 and jRj � 5. Sine Q and R are not skinny, there is an S �fP4;2; P4;3; P4;4; P4;5g with jSj � 2 suh that S � fQ;Rg. Then E := L(fSng [ S) � fSng [ S � Fand 1 � jEj � 3.If jEj = 1 then N3;2 � E � F . If jEj = 2 then E is a loser by Corollary 6.3, sine E has a polyominowith size 4. Hene N2;1, N2;2 or N2;3 is simpler than E . We have N3;1 = N2;1, N3;3 � N2;2 andN3;2 = N2;3 whih implies N3;i � N2;j � E � F for some i and j as desired.Assume jEj = 3. If E 6= Y3 then N3;i � E � F for some i by the �rst part of the proof. Soit remains to onsider the ase when E = Y3. Then we must have an anestor Q0 of Q and ananestor R0 of R suh that jQ0j = 4 and jR0j = 5. Figure 6.4 shows the size 5 desendants of C2and Z2. From this we an see that either we have Q0 = Z2 and R0 = P5;4 or we have Q0 = C2 andR0 2 fP5;4; P5;8; P5;9; P5;10g. In the �rst ase N3;2 � fSn; Z2; P5;4g � F . In the seond ase one of
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C2 v P5;4 Z2 v P5;4 , P5;8 , P5;9 , P5;10Figure 6.4. Desendants of C2 and Z2 with size 5 .� � �Figure 6.5. Squiggle polyominoes.

N4;1 N4;2 N4;3 N4;4 N4;5fL2g fS3; Z2g fS3; C2g fS4; L3; C2; Z2g fS4; T2; C2; Z2gPA PB PC PE PDFigure 6.6. Charaterizing families for size 4. Killer 2-pavings are listed for losingfamilies. No winning family is required.the following holds:N3;3;N3;4 � fSn; C2; P5;4g � FN3;4 � fSn; C2; P5;8g � F (n � 4 sine S3 v P5;8)N3;4 � fSn; C2; P5;9g � F (n � 4 sine S3 v P5;9)N3;3 � fSn; C2; P5;10g � F : �We need a preliminary result before we an deal with size 4 families. The polyominoes shown inFigure 6.5 are alled squiggle polyominoes.Proposition 6.5. A family F of size 4 or more does not have any polyominoes of size 3 or less.Proof. It is lear that the full family Fs annot be extended to a larger family. Hene neither S1nor S2 an be a member of F . We annot have both S3 and L2 in F either.If L2 2 F then all the other polyominoes in F must be skinny sine the non-skinny polyominoesare related to L2. Only one skinny polyomino is allowed so this limits the size of F to 2.Suppose that S3 2 F . The only polyominoes not related to S3 are C2 and the squiggle polyomi-noes. Any two squiggle polyominoes are related so F annot ontain more than one. This limitsthe size of F to 3. �Proposition 6.6. There are no winning families with size 4. N4;1 = fL2g, N4;2 = fS2; Z2g,N4;3 = fS2; C2; P5;10g, N4;4 = fS4; L3; C2; Z2g and N4;5 = fS4; T2; C2; Z2g is a haraterizingolletion of losers for size 4 families.



10 EDGAR FISHER AND NÁNDOR SIEBENProof. Let F be a family of size 4. If Sn is not in F then N3;1 � F . So assume F = fSn; P;Q;Rg.for some n � 3. By Proposition 6.5 we an assume that n; jP j; jQj; jRj � 4. There is an S �fP4;2; : : : ; P4;5g with jSj � 3 suh that S � fP;Q;Rg. Then E := L(fSng[S) � fSng[S � F and1 � jEj � 4.If jEj = 1 then N4;2;N4;3 � E � F . If jEj = 2 then one of the following holds:N4;2;N4;3;N4;4 � fSn; L3g = E � FN4;2;N4;3;N4;5 � fSn; T2g = E � FN4;3;N4;4;N4;5 � fSn; C2g = E � FN4;2;N4;4;N4;5 � fSn; Z2g = E � F :If jEj = 3 then one of the followingN4;2;N4;3 � fSn; L3;P4;3g = E � FN4;3;N4;4 � fSn; L3; C2g = E � FN4;2;N4;4 � fSn; L3; Z2g = E � FN4;3;N4;5 � fSn; T2; C2g = E � FN4;2;N4;5 � fSn; T2; Z2g = E � FN4;4;N4;5 � fSn; C2; Z2g = E � Fholds. Finally if jEj = 4 then one of the following holds:N4;3 � fSn; L3; T2; C2g = E � FN4;2 � fSn; L3; T2; Z2g = E � FN4;4 � fSn; L3; C2; Z2g = E � FN4;5 � fSn; T2; C2; Z2g = E � F : �De�nition 6.7. A family Y of polyominoes is alled an n-super winner if eah winning family withsize at most n is simpler than Y.Example 6.8. Ys is an s-super winner for s 2 f1; 2g. W in Corollary 4.3 is a 4-super winner.The main result of our paper is the following.Theorem 6.9. A family of polyominoes ontaining fewer than 5 polyominoes is a winner if andonly if it is simpler than W. 7. Further questionsThere are several questions to be answered about set games.(1) The families Y2 and W are in�nite winners. Both of these are unbounded. Is there anin�nite winning family that is bounded?(2) Even though there are no winning families with size 4, we ould say that Y4 = fS1g is aharaterizing winner for size 4 families. So there is a haraterizing winning family for sizesfrom 1 to 4. Is there a haraterizing winner for eah size?(3) Is there an s-super winner for eah s? Is there a super winner that is s-super for eah s?(4) Is there a useful notion of a super loser?(5) Are there any haraterizing or super winners in the unbiased or di�erently biased set gamesplayed on triangular, hexagonal and higher dimensional retangular boards?
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