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AbstratRetangular polyomino set (1,2)-ahievementgamesEdgar Lee FisherWe determine sets of retangular polyominoes as winning or losing inthe (1,2) weak ahievement game. The (1,2) weak ahievement game onthe retangular board is a game in whih two players alternately markunmarked squares on a retangular board. The �rst player has one markand the seond player has two marks. A relationship between sets isestablished to simplify the proess and narrow the lassi�ations to a fewimportant sets. All sets of size 4 or less are ompletely determined aswinning or losing. Some in�nite sets are also determined as winning orlosing as they arise naturally in the theory.

ii



Aknowledgements
I am grateful to Dr. N�andor Sieben for all of his ideas, help and support through-out this thesis. The topi was interesting enough for him to bring it to me and Ienjoyed the disoveries that were made. His knowledge in the area made it possiblefor me to go to him whenever I had a question and get a good answer or a thoughtprovoking question.I thank my family for all of their support in my Graduate areer through theirthoughts and prayers. Just as important are the friends who ared enough for me totalk to me, even though I was too busy to talk to them.Thanks to Dr. Judy Clarke and Dr. Dennis Nemzer for enouraging me to on-tinue my shooling and providing moral and written support.

iii



ContentsList of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viList of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viiiDediation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ixChapter 1 Introdution 1Chapter 2 Preliminaries 52.1 Game Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Polyominoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Chapter 3 Single Animal Ahievement Games 103.1 Winning Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.2 Losing Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.2.1 (1,1)-Ahievement Game . . . . . . . . . . . . . . . . . . . . . 153.2.2 (1,2)-Ahievement Game . . . . . . . . . . . . . . . . . . . . . 15Chapter 4 Set Polyomino Games 184.1 Set Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184.2 Partial Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.3 General Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Chapter 5 Classi�ation of Families 225.1 Size One Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225.2 Size Two Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235.3 Size Three Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245.4 Size Four Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Chapter 6 Further Results 306.1 Size Five Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306.2 General Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31iv



Chapter 7 In�nitude of Animals and Sets 347.1 Transfamilies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347.2 In�nite Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Chapter 8 Programs 398.1 Polyomino Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398.2 Paving Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408.3 Paving Cheking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Bibliography 45Appendix A C++ Code 49A.1 Postsript Generating Code . . . . . . . . . . . . . . . . . . . . . . . 49A.2 Paving Code for a Spei� Family . . . . . . . . . . . . . . . . . . . . 56A.3 Created Paving Postsript Code . . . . . . . . . . . . . . . . . . . . . 62A.4 Paving Cheking Code . . . . . . . . . . . . . . . . . . . . . . . . . . 64A.4.1 Cheking Code . . . . . . . . . . . . . . . . . . . . . . . . . . 65A.4.2 Paving File Generator . . . . . . . . . . . . . . . . . . . . . . 68A.5 PERL Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69A.5.1 Paving Generation . . . . . . . . . . . . . . . . . . . . . . . . 70A.5.2 Polyominoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70A.5.3 Paving pitures . . . . . . . . . . . . . . . . . . . . . . . . . . 70Appendix B Polyomino information 72

v



List of Tables2.1 The number of non-equivalent animals up to size 15. . . . . . . . . . 95.1 Charaterizing set C1 of winners and losers for size one families. . . . 225.2 Charaterizing set C2 of winners and losers for size two families. . . . 235.3 Charaterizing set C3 of winners and losers for size three families. . . 275.4 Charaterizing set of winners and losers for size four families. . . . . . 286.1 p?(k) and the number of possible marks of the breaker in the (1,2)-ahievement game for 1 � k � 4. . . . . . . . . . . . . . . . . . . . . 31B.1 Polyominoes and the double pavings that defeat them. . . . . . . . . 72B.2 Polyomino anestry for next immediately sized polyominoes. . . . . . 75

vi



List of Figures1.1 The polyomino known as Snaky. . . . . . . . . . . . . . . . . . . . . . 32.1 Game board with oordinates imposed. . . . . . . . . . . . . . . . . . 62.2 Polyominoes up to size 5 in normal position, ordered by size and thenby lexiographi order. . . . . . . . . . . . . . . . . . . . . . . . . . . 82.3 Squiggle up to size 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.1 Deletions of situations whih have been used to reate 1-good joins inFigure 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.2 A winning position sequene for the maker in the (1,1)-ahievementgame. Notie that any situation si has a row in the table. For example,in s2 we an ahieve s1 by marking the apital letters A or B. . . . . 133.3 P5;7 defeated by SPA . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.4 Winners for the (1,1) (weak) ahievement game. . . . . . . . . . . . . 153.5 Pavings for the (1,1)-ahievement game. The dark pairs form S whilethe lighter pairs are opies by translation through u; v and u+ v. Thearrows are the vetors in V . . . . . . . . . . . . . . . . . . . . . . . . 163.6 P3;2 defeated by DPA. Note that eah ell here in DPA is related to twoother ells while those in SPA are related to only one. . . . . . . . . . 163.7 Some examples of double pavings. The arrows are the elements in Vwhile the dark pairs form S. The light pairs are the opies of S throughu; v and u+ v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.1 A set of in�nite polyominoes that does not have a legalization. . . . . 205.1 Double pavings that are used to lassify ertain families as losers inthis hapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235.2 Winning strategy for the family F = fPn;1; P3;2g. . . . . . . . . . . . 255.3 Winning strategy for W3;1 = fP3;1; P4;4; P4;5g . . . . . . . . . . . . . . 266.1 All polyominoes P 2 Pn suh that j�(P )j = p?(n) for n � 4. Theboundary onsists of the empty ells. . . . . . . . . . . . . . . . . . . 30vii



6.2 Game board position after being able to ahieve only P4;1. . . . . . . 326.3 In�nite board situation for a winning strategy of Fn. . . . . . . . . . 327.1 A winning transfamily. . . . . . . . . . . . . . . . . . . . . . . . . . . 357.2 Two in�nite losing families. . . . . . . . . . . . . . . . . . . . . . . . 357.3 Positions for the in�nite transfamily winning strategy. . . . . . . . . . 367.4 A winning in�nite transfamily, I4. . . . . . . . . . . . . . . . . . . . . 378.1 A paving generated by the paving program on a 30x30 board forP4;3; P4;4; P4;5; P5;1 and P5;5 . . . . . . . . . . . . . . . . . . . . . . . . 428.2 Two pavings that an be extrated from Figure 8.1 . . . . . . . . . . 428.3 The fundamental vetors of a 2-paving and their relation to onstrutsin the paving heking program. Note that jvkj = (jxkj; jykj) . . . . . 438.4 2-paving as referene for problem loations in a paving. . . . . . . . . 43B.1 All ongruene lasses of polyominoes up to size 4, ordered by size andthen by lexiographi order. . . . . . . . . . . . . . . . . . . . . . . . 73B.2 Congruene lasses of polyominoes of size 5, ordered by lexiographiorder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73B.3 Congruene lasses of polyominoes of size 6, ordered by lexiographiorder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

viii



To Julie,For all of your patiene and experiene whih made it easier for me to do this. I loveyou.

ix



Chapter 1IntrodutionTi-Ta-Toe is a widely played game in whih players alternate plaing a mark of theirown olor in a previously unmarked square of a 3 � 3 retangular board. The �rstplayer to get three marks in a line is the winner. Hypergraph games are generalizationsof this game.A (�nite) hypergraph is a pair (X;F) where X is a �nite set, alled the set ofverties, and F is an arbitrary family of subsets of X. The elements of F are alledhyperedges. In a hypergraph game, two players alternate marking previously unmarkedverties of the hypergraph with their respetive olor. The �rst player to mark allthe verties of some element of F is the winner. Hypergraph games are also alledstrong positional games.Aording to the strategy stealing argument the �rst player is guaranteed to eitherwin or draw. To see this let us assume �rst that the seond player has a winningstrategy. To begin the game, the �rst player should plae a random mark on theboard. Ignoring his �rst mark, the �rst player uses, \steals", the seond player'sstrategy. At this point, the �rst player has a winning strategy. At some point, thestrategy may require the �rst player to mark in a ell that is already marked byhimself. This ould happen if the �rst player's previous mark is in the ell that thestrategy requires. Then the �rst player should just make another random mark onthe board. Therefore the �rst player always has some extra mark on the board whihan only help him.Our fous of attention is on games between perfet players. That is, eah playerknows and plays the best possible moves to win or draw in a game. If we onsiderless than perfet players, then a win is more likely for some players. Thus we arein essene onsidering the worst ase senario for the movements between players. Ifthe �rst player has a winning strategy, regardless of the other player's moves, the�rst player will win. However, if the strategy just fores a draw, a bad play from theseond player an allow the �rst player to win.1



2Sine the �rst player an always win or draw, the seond player ould insteadfous on keeping the �rst from winning. In this ase, the �rst player is alled themaker and the seond the breaker. These games are alled weak hypergraph gamesand will be the fous of this thesis. The maker wins in the standard sense while thebreaker wins if she keeps the maker from winning. In this ase, there is no draw gameas either the maker ahieved the goal or the breaker kept him from doing so.Some onnetions between the strong and weak games are lear. If the �rst playerhas a winning strategy in the strong game, then that same strategy will guarantee awin in the weak game. However, a win for the maker in the weak game an beome adraw in the strong game. Similarly, if the breaker has a winning strategy in the weakgame, then she has a drawing strategy in the strong game. However, a draw in thestrong game, for the seond player, ould be a loss in the weak game for the breaker,as in Ti-Ta-Toe.Sine both players are defensive and o�ensive in the strong game, there needs tobe a more ompliated strategy to play the games. In the weak game, the makeran fous on trying to ahieve his goal and the breaker an fous on trying to stopthe maker. This simpli�es the ideas for the di�erent strategies. Note, however, thatthis does not redue the problem to a trivial question. Instead it fouses on di�erenttypes of strategies.For ertain weak games, Erd}os and Selfridge found a suÆient ondition for theseond player's win. Given a hypergraph (X;F), ifXP2F 2�jP j < 12then the seond player has a winning strategy, [14℄. The argument is based on weightfuntions that use a potential funtion to measure the likely outome of the game.The weak game in whih the players alternate plaing a single mark on the boardis alled the (1,1) weak game. This is where the Erd}os, Selfridge result holds. A(p; q) ahievement game is similar to a (1,1) game, exept that in eah turn the �rstplayer plaes p marks and the seond player plaes q marks. In [3℄, Bek extendedthe Erd}os, Selfridge result to the (p; q) weak game as: IfXP2F(1 + q)�jP jp < 11 + qthen the seond player has a winning strategy. Let d be the number of verties in Fand e the maximum number of edges ontaining two verties of F . Bek result [3℄says that if XP2F �1 + qp��jP j > p2q2(p+ q)3de



3
Figure 1.1: The polyomino known as Snaky.then the �rst player has a winning strategy. Note that this result an give us usefulresults and bounds on ertain items, but only when the board is �nite. The resultsfail on the in�nite board.In this thesis, we use an in�nite retangular board. The desription of the boardand polyominoes (shapes made from ells on the board) orresponding to this boardare disussed further in Chapter 2. By extending the size of the board, the game inessene beomes a (1,q) game for alulations. That is, we need to use Bek's resulton (1,q) game as opposed to the (1,1) result for even rough estimates if we want touse the weight funtion. In this fashion, it is determined that Snaky (see Figure 1.1)is a 41-dimensional winner [38℄ although Snaky is in fat a 3-dimensional winner [39℄.This invites the study of biased games to help understand the in�nite board. Thatis, games where one player has more moves than the other.Ahievement games are speial hypergraph games when there is a onrete set orobjet that is trying to be ahieved. The hyperedges are then de�ned as the goalobjets and the set of verties, known as the game board, is some superset of theunion of the ells of the goal objets.The importane of weak ahievement games is due in part to Ramsey Theory. Inessene, Ramsey's Theorem states \For all a; b 2 N there exists an R(a; b), alledthe Ramsey Number, suh that for all n � R(a; b) any simple graph G on n vertiesontains either a lique on a verties or an independent set of b verties" [18℄. Then ifthe game board were the edges of a omplete graph with n verties, Ramsey Theorymight be used to help determine results.Consider the game where players are marking the edges of the omplete graphKn and are trying to ahieve Ka for some a < n. The verties of the orrespondinghypergraph (X;F) are the edges of Kn. The hyperedges are all the a element subsetsof X.If n � R(a; a) then Ramsey's Theorem guarantees that the game is not a draw. Tosee this, let the players mark edges until all the edges are marked. Then by Ramsey'sTheorem, there is a subgraph isomorphi to Ka marked by a single olor. This meansone of the players ahieved Ka. So one of the players has a winning strategy andby the strategy stealing argument, this player must be the �rst player. In the game



4where a = 3 the �rst player wins if n � 6 = R(3; 3).Other ahievement games ould be on a omplete graph to ahieve a spanningtree or a on bipartite graphs [16℄. If the set of verties were instead the elements ofa group, then a goal ould be to selet the generator(s) of the group or subgroup [1℄.Ti-Ta-Toe and other polyomino games are also ahievement games. Ahieve-ment games for polyominoes were introdued by Frank Harary [22, 20, 19, 25℄. Theells in the polyominoes are the verties in a graph and the edges for the hypergraphgame are the group of verties that make the shape of the polyomino. Sine allisomorphi polyominoes are also winners, only one representative edge (polyomino)needs to be given. There an be many di�erent versions of polyomino games. Theboard an be di�erent shapes: Platoni solids [6℄, a torus [21℄, hyperboli plane ormultidimensional [39℄. Even if the board is on the plane, it an have di�erent tilingsof the plane, whih also hanges the shape of the polyominoes. The tiling ould beby triangles [9, 26℄, retangles [26, 36℄, mosais [8, 5℄, tessellations [10℄ or hexagons[7, 37℄.A onsideration for the in�nite board is taken into aount for this thesis. Sinethe board is in�nite the play ontinues until either the maker has atually ahievedthe goal or the breaker has proven onlusively to the maker that regardless of hismoves, she an keep him from winning. Larger board size gives an advantage to themaker as the breaker must now have a strategy that does not just stall the maker butin fat stops him. Thus the win of the breaker is a matter of proof sine the makeran play forever.For this reason, the unbiased single polyomino game is diÆult on the in�niteboard. When sets of polyominoes are onsidered, it beomes even more omplex.To balane the game, we add bias in favor of the breaker. That is, we onsider thegame where the breaker gets two marks after every one mark of the maker's. In thisfashion, the number of singleton winning sets is limited.In Chapter 3 the terminology for a single polyomino to be winning or losing forthe (1,1) and (1,2) ahievement games is disussed. Then Chapter 4 extends theseideas to sets of polyominoes and establishes a relationship between sets to simplifythe lassi�ation of eah set as winning or losing. Some basi fats about sets are alsodisussed. Chapter 5 uses the information from Chapters 3 and 4 to lassify all setsup to size 4 as winning or losing. Following this, Chapter 6 gives some basi resultsfor size 5 sets and establishes some limitations on sets with spei� attributes thatmight be larger. The in�nite sized polyominoes and sets are disussed in Chapter 7.Finally, Chapter 8 explores the programs and algorithms that were used to establishsome results and generate the graphis throughout the thesis.



Chapter 2Preliminaries
2.1 Game BoardIn this thesis we fous on a single board, the retangular board. Other boards thatould have been used are triangular, hexagonal or ubi (3-dimensional retangular)boards [7, 8, 9, 28, 33, 37, 39℄.De�nition 2.1 The retangular game board is Z� Z. The geometri representationof the game board is the set f[x � 12 ; x + 12 ℄ � [y � 12 ; y + 12 ℄ j (x; y) 2 Z� Zg. Theelements of the board are alled ells.The retangular board is based on a Eulidean tiling of the plane. We an thinkof it as an in�nite hessboard. See Figure 2.1 for a visual representation of the gameboard with oordinates imposed.De�nition 2.2 Let 1 = (x1; y1) and 2 = (x2; y2) be ells of the game board. Wesay 1 � 2 if one of the following two onditions holds:(a) x1 < x2;(b) x1 = x2 and y1 � y2.This gives the usual lexiographi ordering of the ells of the game board.2.2 PolyominoesIn [17℄, Golomb de�nes a polyomino as \shapes made by onneting ertain numbersof equal-sized squares, eah joined together with at least one other square along anedge." However in the games with polyominoes, as desribed in [36, 37, 33, 27℄,5
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(-1,-1) (0,-1) (1,-1) (2,-1)

(-1,0) (0,0) (1,0) (2,0)

(-1,1) (0,1) (1,1) (2,1)

(-1,2) (0,2) (1,2) (2,2)

Figure 2.1: Game board with oordinates imposed.there are some added onstraints to the de�nition. For larity, we will de�ne thepolyominoes in the algebrai setting.De�nition 2.3 Two ells (x1; y1) and (x2; y2) are adjaent if jx1�x2j+ jy1�y2j = 1.Note that this means one of the oordinates of the ells are the same and the otheroordinates di�er by one. An equivalent geometri desription is that the ells sharean edge.De�nition 2.4 A path of ells is a �nite sequene (1; 2; : : : ; n) of ells whose on-seutive ells are adjaent. We say that the path onnets 1 to n.De�nition 2.5 A subset P of the game board is onneted if for any two ells ; d 2 Pthere is a path of ells in P that onnets  to d.De�nition 2.6 An animal is a �nite onneted set of ells whose omplement is alsoonneted. A polyomino is the geometri representation of an animal.This de�nition eliminates polyominoes that are onneted only through a orneror have a hole in them. This is the standard de�nition [36, 39, 9, 34℄ of a polyomino forahievement games. In perolation theory, the term animal is also used to representadjaent ells to simplify the physis. Thus the idea of an animal is not new to thesienti� ommunity, but in this ase is being applied diretly to shapes. With thisrestrition of the polyominoes, the set of polyominoes to onsider is redued to amanageable size. Therefore the questions that arise are not ompletely out of reah.



7Some of the onepts in this paper were presented originally in a geometri setting.However, the algebrai representation an be more onvenient. Therefore we will useboth representations throughout. The polyomino is the geometri representation andan animal is the algebrai representation. Sine polyominoes and animals are in abijetive orrespondene, they an almost always be used interhangeably. Hene, ifa statement is made about a polyomino or animal then it has a version for the otherunless there is a spei� di�erene noted.De�nition 2.7 The size of an animal P is the number of ells within the animal.This we denote by jP j.De�nition 2.8 Two animals P and Q are equivalent if their polyomino representa-tions are ongruent. We denote this by P � Q. Note that this is an equivalenerelation.To lassify eah equivalene lass, we need to pik a representative in some normalposition from eah lass. This requires a few de�nitions.De�nition 2.9 Let  = (1; 2; : : : ; m) and d = (d1; d2; : : : ; dn) be �nite sequenes ofells. We say  < d in the lexiographi order if one of the following holds:(a) i = di for all 1 � i � m and m < n;(b) There exists a k � m suh that i = di for all 1 � i < k and k < dk.We say  � d if  < d or  = d.De�nition 2.10 Given two animals P and Q, with lexiographially ordered se-quenes of ells (p1; : : : ; pm) and (q1; : : : ; qn) respetively. We say that P � Q if(p1; : : : ; pm) � (q1; : : : ; qn) in the lexiographi order.For the following de�nition we use the notation W = f0; 1; 2; : : :g for the set ofwhole numbers to distinguish from the set of natural numbers N = f1; 2; : : :g.De�nition 2.11 Let P be an animal. The set A = fQ � W � W j Q � Pg is wellordered by �. The minimum element of A is the normal position of P . It is alsoalled the normalization of P .To determine the normal position of an animal, all the rotations, reetions andombinations of rotations and reetions of the polyomino are determined. Theseare then plaed so that all the oordinates are non-negative. This is e�etively push-ing the polyominoes as "lose to the axes" as possible. The lexiographi order ofthese plaements is then established. The normal position is the plaement with the
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P1;1 P2;1 P3;1 P3;2 P4;1 P4;2 P4;3 P4;4 P4;5L2 L3 T2 C2 Z2

P5;1 P5;2 P5;3 P5;4 P5;5 P5;6L4 C3
P5;7 P5;8 P5;9 P5;10 P5;11 P5;12T3 Z3Figure 2.2: Polyominoes up to size 5 in normal position, ordered by size and then bylexiographi order.smallest lexiographi order. Note that sine the polyomino is always within the �rstquadrant, all of the ells will have non-negative oordinates. The algorithm for thisproedure is disussed in Chapter 8.1.In Figure 2.2 we have a representative in normal position of all the polyominoequivalene lasses up to size �ve.De�nition 2.12 We denote the set of animals of size n in normal position by Pn =fPn;i j i = 1; 2; : : : ; kng, where kn is the number of animals of size n. The indies arehosen suh that Pn;i < Pn;j whenever i < j.De�nition 2.13 We all the olletion of animals with n linearly adjaent ellsskinny polyominoes.Note that an animal P is skinny if and only if P � Pn;1 for some n. Also notethat for n = 1 or 2, Pn = fPn;1g.
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� � �Figure 2.3: Squiggle up to size 6.n kn n kn1 1 9 12482 1 10 44603 2 11 160944 5 12 589375 12 13 2171176 35 14 8054757 107 15 30012118 363Table 2.1: The number of non-equivalent animals up to size 15.De�nition 2.14 We all the olletion of animals equivalent to the polyominoesdepited in Figure 2.3 squiggle animals.The total number of non-equivalent polyominoes of a given size has no knownlosed formula. From [17℄ we get the table in Figure 2.1 whih gives kn for n � 15.Using the algorithm desribed in Chapter 8.1, we veri�ed the numbers for n � 7.De�nition 2.15 An animal P is an anestor of the animal Q, if there is an animalR suh that R � P and R � Q. This is denoted by P v Q.Proposition 2.16 The anestor relation is a partial order of the set of normalizedanimals.Proof: It is lear that P v P for any animal P . Transitivity is also lear.To verify antisymmetry, let P and Q be normalized animals suh that P v Q andQ v P . Then there exists an R suh that R � P and R � Q. Also there exists anS � Q suh that S � P . Therefore we have that P � R � Q � S � P whih impliesthat P � Q.Sine both P and Q are normalized, this means that P = Q. Therefore therelation is reexive, transitive and antisymmetri and as suh is a partial order of thenormalized animals. �



Chapter 3Single Animal Ahievement Games
3.1 Winning AnimalsTo lassify an animal as a winner, a strategy needs to be determined for the maker tofollow. This strategy must enable the maker to ahieve the animal regardless of thebreaker's moves, even if the breaker knows the maker's strategy. One way to desribea winning strategy is to onsider situations, de�ned below. This setion fouses onthe (1,k)-ahievement game. That is, the breaker marks k ells after every mark ofthe maker.De�nition 3.1 A situation s is a pair (Cs; Ns) where the ore Cs and the neighbor-hood Ns are sets of ells suh that Cs \Ns = ;.A situation aptures the essene of the game board after the maker's move. Theore ontains the maker's marks while the neighborhood is some set of unmarkedells. This neighborhood ontains all the future moves of the maker, thus, the ellsare ruial to the strategy of the maker. See Figure 3.2 for an illustration of somesituations. The ore is indiated by dark ells, while the neighborhood onsists of allells with letters in them.Capital letters denote ells that ould be the next mark for the maker. Loweraseversions of a apital letter identify ells that must be vaant in order for the maker'smark on that apital letter to be strategi. Thus the hoie of moves for the makeris limited by the breaker's moves within the neighborhood.One the maker plaes a mark, he has established a new situation. The ore of thisnew situation is some subset of the previous ore along with the most reent mark.The neighborhood of this new situation is the set of ells ontaining the loweraseversion of the apital letter marked by the maker.10



11The ells outside of the neighborhood are not displayed in a piture of a situationas they do not a�et the playability of that situation. Eah mark the breaker plaesoutside the neighborhood, gives the maker more freedom for his next move.De�nition 3.2 Let (C;N) be a situation. If  2 C, then (Cnfg; N [ fg) is alleda deletion of the situation.Notie that (Cnfg)\(N [fg) = ; so a deletion of a situation is itself a situation.De�nition 3.3 Let S be a set of situations. If C = Ss2S Cs and N = Ss2S Ns aredisjoint then the situation (C;N) is alled the join of S. A set K of ells is a k-killerset for S if jKj � k and for all s 2 S, K \ Ns 6= ;. If there is no k-killer set for S,then we say the join of S is k-good.In essene, a k-killer set is a set of ells the breaker intends to mark to preventthe maker from attaining any future situations.De�nition 3.4 A winning position sequene for an animal P in the (1,k)-ahieve-ment game is a �nite sequene (sn; sn�1; : : : ; s1; s0) of situations with the followingriteria:(a) Cs0 is the goal animal, P ;(b) For all i, the situation si is a k-good join of situations that are equivalent todeletions of some situations from fs0; s1; : : : ; si�1g;() jCsnj = 1.The deletions and joins are reated from situations that represent a future state ofthe game board. We start with the animals we want to ahieve and reate deletionsand joins until we have k-good joins. Eventually we want a situation with a singletonore. This singleton ore is the �rst mark of the maker.See Figure 3.2 for an example of a winning position sequene. Figure 3.1 showsthe details to reate this winning position sequene. It shows deletions, the situationsfrom whih these deletions originated and the joins for whih they will be used. Thejoins of these deletions are derived by overlapping their ores. Sine we are playingthe (1,1) game, eah join is a 1-good join.Consider situation s1 in Figure 3.2. This is a 1-good join of two deletions of s0beause there is no singleton set of ells that intersets the neighborhoods of bothdeletions. This means that there is no single ell the breaker an mark to ruin bothof the desired moves of the maker. We ould easily reate up to a 4-good join withfour deletions of s0. However, this is unneessary sine the breaker only has one markin the (1,1) game. Using a k-good join for k > 1 reates a situation with a larger



12Original s0 s1 s2
Deletions A

a A a

a a a

A
a a a

B b B b b b
b B b
b b

c c
c C c
c cJoin s1 s2 s3Figure 3.1: Deletions of situations whih have been used to reate 1-good joins inFigure 3.2.neighborhood that is harder to ahieve. Future 1-good joins based on deletions ofthese more ompliated situations would be harder or impossible to reate.Now onsider situation s3. We an see ells that have multiple letters in them. Thisis the �rst situation in this winning position sequene in whih this ours. Suppose weonly join the �rst two of the deletions with letters A and B in their neighborhoods.This join is not 1-good sine the ell ontaining \ab" is in the intersetion of theneighborhoods of both deletions. That is, the breaker an mark this ell and preventthe maker from ahieving s2. We annot reate a 1-good join from any other twodeletions sine there is at least one ell that ruins any two of the three deletions.Therefore a third deletion is needed to reate a 1-good join. There is no need to addfurther deletions to the situation s3 sine all we need is a 1-good join in the (1,1)game.In this thesis, the winning position sequenes are represented with geometri il-lustrations of situations. Along with the situations are a table and a owhart. Thetable shows possible future situations based on the maker's mark. Eah row in thetable lists di�erent situations ahievable from a situation s. If all of a partiular letterare free from a breaker's mark, then the maker an mark the ell with the upper aseletter and the situation with that letter in the table has been ahieved. The owhartshows the possible paths of the game as it is played.Let us onsider a game played using this strategy for the (1,1) game. We shall playthe maker, starting with situation s3, after a single mark. Assume that the breaker
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A B b B b

a A a

c ab a ac b

c Cb Bc b

c b A c b

a a a

s0 s1 s2 s3s A B Cs1 s0 s0s2 s1 s1s3 s2 s2 s2s3 // s2 // s1 // s0Figure 3.2: A winning position sequene for the maker in the (1,1)-ahievement game.Notie that any situation si has a row in the table. For example, in s2 we an ahieves1 by marking the apital letters A or B.marks in the ell with Cb. Then the situations orresponding to B and C are notattainable. Therefore we mark in the ell ontaining A. In the table from Figure 3.2,this orresponds to s2, seen in Figure 3.1 in the upper right orner. So we have nowahieved s2 and it is the breaker's move again. Assume the breaker marks in the ellontaining A. Then the situation orresponding to A is not attainable so we markin the ell ontaining B. From the table in Figure 3.2 we have ahieved s1. For thebreaker's �nal move, assume she marks the ell ontaining B. Then we mark the ellontaining A and have ahieved s0 = P4;2, the goal animal.Proposition 3.5 An anestor of a winning animal is a winner.Proof: Let P and Q be animals suh that P v Q and Q is a winning animal. Thenthere exists a winning strategy for Q. Using this same strategy the maker an ahieveP at the same time or before he ahieves Q. �3.2 Losing AnimalsFor an animal to be a loser, the breaker must have a strategy to keep the maker fromahieving the target animal. The most frequently used tool to de�ne this strategy isa paving.
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Figure 3.3: P5;7 defeated by SPADe�nition 3.6 A k-paving is a symmetri relation on Z� Z in whih no ell in theboard is related to itself and eah ell is related to at most k other ells. Two ellsthat are related are alled a pair.Remark 3.7 A domino is a pair of adjaent ells. A paving is alled a domino pavingif all of its pairs are dominoes. We use the term single paving for a 1-paving and doublepaving for a 2-paving. See Figures 3.5 and 3.7 for illustrations.De�nition 3.8 A fundamental region F of a k-paving is a pair (V; S) where V =fu; vg is a set of two integer vetors alled the fundamental vetors and S is a set ofpairs, the fundamental set. If p is a pair of the paving, then p is in the orbit of anelement of S through a translation by integer linear ombinations of the vetors inV . The group generated by V ats on S and propagates the paving over Z� Z.The fundamental region aptures the idea of the paving in two vetors and a setof pairs. These pairs are opied aross the plane to reate the paving for an in�niteboard. Assume that p̂ is a pair in the paving, then there exists a p 2 S suh thatp̂ = mv1 + nv2 + p where m;n 2 Z.In the illustrations for a k-paving, see Figures 3.5, 3.7, V is the two vetorsas shown by the arrows and S is the set of dark pairs. The designation SP� is asingle paving while DP� is a double paving, where � is some letter. Eah illustrationrepresents four opies of the fundamental region. The dark pairs are the identityopy and the light pairs are the opies translated by u; v and u+ v. For larity andsimpliity, we have tried to �nd the smallest fundamental region to represent eahpaving.De�nition 3.9 A k-paving kills an animal P if for every animal R suh that R � Pthere is a pair from the paving in R. An animal P is said to be immune to a k-pavingif it is not killed by the k-paving. In Figure 3.3 we see single paving SPA killing P5;7.De�nition 3.10 The strategy based on a paving, whih is a strategy for the breaker,is to mark in all ells that are paired with the ell that the maker marked. If fewer
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Figure 3.4: Winners for the (1,1) (weak) ahievement game.than k unmarked ells are paired with the maker's move, the breaker should mark allof these and plae her remaining marks in any unmarked ell. Note this extra markwill always be in favor of the breaker.Theorem 3.11 If a k-paving A kills an animal P , then the strategy based on A willkeep the maker from ahieving P .Proof: Suppose the maker ahieved P . Sine A kills P , there is a pair within P , allthem i and j. Without loss of generality, let us assume that i was marked beforej. Then when the maker marked i, the breaker marked j. Thus the maker ouldnot have ahieved P . �Proposition 3.12 A desendant of a loser is a loser.Proof: This is the ontrapositive of Proposition 3.5. �3.2.1 (1,1)-Ahievement GameFor the (1,1)-ahievement game, all but one question has been answered about whethera given animal is a winner or a loser [27℄. The known winners are in Figure 3.4. Therest of the polyominoes are losers exept possibly for Snaky, P6;11, see Figure 1.1. Itis not known if Snaky is a winner or a loser, see [25, 32, 31℄ for further results.Figure 3.5 has some examples of single pavings. Some strategies for the breakerfor the (1,1) game are de�ned from these pavings. Note that eah of these pavings isa domino paving.3.2.2 (1,2)-Ahievement GameFor the (1,2)-ahievement game, the breaker gets two marks and the paving shouldreet this.A useful way to reate a double paving is to ombine two single pavings. Thisis disernible in DPA. See Figure 3.6 for an example of a double paving defeating apolyomino.
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SPA SPB SPC SPDFigure 3.5: Pavings for the (1,1)-ahievement game. The dark pairs form S while thelighter pairs are opies by translation through u; v and u + v. The arrows are thevetors in V .

Figure 3.6: P3;2 defeated by DPA. Note that eah ell here in DPA is related to twoother ells while those in SPA are related to only one.Proposition 3.13 All animals Pn;i, for n � 3, are losers in the (1; 2)-ahievementgame.Proof: P3;1 and P3;2 are losers [36℄. Every animal Pn;i for n > 3 is a desendant ofeither P3;1 or P3;2. Therefore they are all losers by Proposition 3.12. �
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DPA DPB DPC DPD

DPI DPJFigure 3.7: Some examples of double pavings. The arrows are the elements in V whilethe dark pairs form S. The light pairs are the opies of S through u; v and u+ v.



Chapter 4Set Polyomino Games
4.1 Set GamesSet games are polyomino ahievement games in whih a set of polyominoes beomesthe goal of the game.De�nition 4.1 A set of animals is a winning set if the maker an always ahieve atleast one of the animals in the set. A set is a losing set if it is not a winning set.The following are reformulations of de�nitions for single animals.De�nition 4.2 A winning strategy for a setM of animals, with jM j = j in the (1,k)-ahievement game is a �nite sequene (sn; sn�1; : : : ; s1; s0; s�1; : : : ; s1�j) of situationswith the following riteria:(a) Csi is a goal animal for i = 0;�1; : : : ; 1� j;(b) For all i > 0, the situation si is a k-good join of situations that are equivalentto deletions of situations s1�j; s2�j; : : : ; si�1;() jCsnj = 1.De�nition 4.3 A k-paving kills a set if every animal in the set is killed by the k-paving.If a set is a winning set then regardless of the breaker's moves, the maker isguaranteed to be able to mark ells until one of the animals in the set has beenahieved.If a set is a losing set then the breaker an keep the maker from ahieving any ofthe animals in the set. The most ommon way to determine that a set is losing is to�nd a k-paving that defeats all the animals in the set.We refer to a set as lassi�ed if it is determined as winning or losing.18



194.2 Partial OrderNow we establish a relationship between sets of animals. This relationship enables usto simplify the proess of �nding all winning sets. To make a set easier to ahieve,we an replae a member animal by an anestor or add more members to the set.This motivates the following de�nition whih has been adapted from [9℄ where it wasalled at least and at most.De�nition 4.4 If F = fP1; P2; : : : ; Pmg and G = fQ1; Q2; : : : ; Qng are sets of poly-ominoes, then F is simpler than G if for all Q 2 G there exists a P 2 F suh thatP v Q. We use the notation F � G.The following proposition is the main reason for De�nition 4.4.Proposition 4.5 Let F � G. If G is a winner, then so is F . If F is a loser then sois G.Proof: Let F � G be families of polyominoes and suppose that G is a winner. Thenthe maker is able to mark one of the animals Q 2 G after �nitely many moves. Byde�nition, there exists a polyomino P 2 F suh that P v Q. Thus P is marked atthe same time or earlier than Q and therefore F is a winning family.The seond part of the proposition is the ontrapositive of the �rst part. �Although the seond part of the proposition is merely the ontrapositive of the�rst it is atually the most frequently used portion of the proposition. It is easier toprove something is a loser than a winner.De�nition 4.6 A family of animals is a non-empty set of animals suh that nomember is an anestor of any other member.De�nition 4.7 Let M be a set of animals. A set L(M) is the legalization of M ifL(M) onsists of the minimal animals of M in the ordering v.Proposition 4.8 The legalization L(M) of a set M is a family.Proof: Suppose L(M) is not a family. Then there exist distint animals P and Qin L(M) suh that P v Q. However, this means that Q is not minimal, whih is aontradition. �The notion of legalization relies heavily on the �niteness of polyominoes. If apolyomino were in�nite, then there ould be many problems, one of whih is thatanother in�nite polyomino is an anestor and a desendant, see Figure 4.1 for anexample.
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Figure 4.1: A set of in�nite polyominoes that does not have a legalization.Remark 4.9 IfM and N are sets of polyominoes suh that N �M, thenM� N .That is, a set is simpler than any of its subsets.Proposition 4.10 Let L be the legalization of a set of polyominoes M. Then L is awinner if and only if M is a winner.Proof: First assume that L is a winner. Sine L � M then M� L, by Remark 4.9,and therefore M is a winner by Proposition 4.5.Next assume that M is a winner. By the de�nition of L, for all Q 2 M thereexists a P 2 L suh that P v Q. Therefore L � M and so L is a winner byProposition 4.5. �Proposition 4.11 The relation � is a partial ordering of families of animals instandard position.Proof: It is lear that � is reexive and transitive.To verify antisymmetry, let F and G be families suh that F � G and G � F . Nowif P 2 F then there exists a Q 2 G suh that Q v P sine G � F . Sine F � G thenthere exists a ~P 2 F suh that ~P v Q. Therefore we have that ~P v Q v P . Thismeans that ~P v P and sine F is a family it follows that ~P = P . Thus P = Q 2 Gso F � G. Similarly, G � F and so F = G. This means the relation is reexive,transitive and antisymmetri and is therefore a partial order. �Remark 4.12 Notie that � is not a partial ordering of sets, even if the animals arein standard position. A ounterexample exists in the proof of 4.10 where it is shownthat M � L and L � M. However, if M has a polyomino that is a desendant ofanother member polyomino then L 6=M.4.3 General ResultsProposition 4.13 If a family F is a winner, then Pn;1 2 F , for some n.Proof: If Pn;1 =2 F for any n 2 N then fP3;2g � F . P3;2 is a loser by the strategy basedon DPA, see Figure 3.7 for the visualization. Thus F is a loser by Proposition 4.5. �



21Proposition 4.14 A family of size four or greater does not have any polyominoes ofsize 3 or less.Proof: If P1;1 or P2;1 were in F , then F would onsist of only that animal.Now, there are two polyominoes of size three. If both of these polyominoes werein a family F , then the size of the family would be two. Let us therefore assume thatthere is only one polyomino of size three in F .Let us �rst assume that P3;1 2 F . Sine F is a family, then no anestors of P3;1are in F . The only polyominoes that are not anestors of P3;1 are n-Squiggle andP4;4. If n-Squiggle 2 F for some n, then no other n-Squiggle is in F . Therefore ifP3;1 2 F , then the size of F is at most three.Now assume that P3;2 2 F . Sine F is a family, no anestors of P3;2 2 F . Theonly polyominoes that are not anestors of P3;2 are skinny. Therefore if P3;2 2 F ,then the size of F is at most two. �Remark 4.15 The previous proposition gives us that if F is a family, then if P3;1 2 Fthen jFj = 3 and if P3;2 2 F then jFj = 2.



Chapter 5Classi�ation of FamiliesFor the remainder of the thesis we will only be onsidering the (1,2) game. We willlassify all families of size n, for 1 � n � 4. In eah setion we will desribe aharaterizing set of families Cn ontaining winners whih are less simple than anysize n winner and losers whih are simpler than any size n losers. Thus we will showthat for any family F of size n;F is either simpler than a winner from Cn or a losingfamily from Cn is simpler than F .The haraterizing set of families will be listed in a table with names and then aspolyominoes to help understand why the families are important. For the families ofsize n, the winning families are all size n, while the losing families are at most sizen. Note that these might not neessarily be the simplest families that lassify thesize n families. Rather they are the families that are easiest to ompare to the size nfamilies.5.1 Size One FamiliesThe haraterizing set of families for size one families is listed in Table 5.1.W1 L1W1;1 L1;1 L1;2P2;1 P3;1 P3;2
Table 5.1: Charaterizing set C1 of winners and losers for size one families.22
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DPB DPC DPD
DPE DPF DPGFigure 5.1: Double pavings that are used to lassify ertain families as losers in thishapter W2 L2W2;n L2;1 L2;2 L2;3Pn+2;1; P3;2 P3;2 P3;1; P4;4 P3;1; P4;5

Table 5.2: Charaterizing set C2 of winners and losers for size two families.Size one families are ompletely determined for the (1,2)-ahievement game in [36℄.It states that the only winning animals are P1;1 and P2;1. These are both simpler thanW1;1. Now L1 is the set of size three polyominoes. This means that anything of sizethree or larger has a member of L1 simpler than it. Therefore they are all losers byProposition 4.5. Hene W1 and L1 lassify all size one families.5.2 Size Two FamiliesThe haraterizing set of families for size two families is listed in Table 5.2. Note thatL2;1 = L1;2 and so is a loser.In Table 5.2 there are in�nitely many winning families, one for eah n � 3. This



24topi is disussed and explored further in Chapter 7.Proposition 5.1 The family W2;n = fPn+2;1; P3;2g is a winner for all n. The familiesL2;2 = fP3;1; P4;4g and L2;3 = fP3;1; P4;5g are losing families.Proof: W2;n is winning by the strategy in Figure 5.2. The families L2;2 and L2;3 aredefeated by DPD and DPB respetively, see Figure 5.1. �Proposition 5.2 Every family of size two is ompletely determined as winning orlosing by omparison to C2.Proof: Let F be a family of size two. First note that if Pn;1 =2 F for some n 2 N ,then F is a loser by Proposition 4.13. Therefore let us assume that F = fPn;1; Qgfor some n � 3.We will onsider ases based on the size of the animals in F .Case 1: jQj � 4.Then Q 2 fP3;2; P4;2; P4;3; P4;4; P4;5g sine the animals in fP1;1; P2;1; P3;1; P4;1gare related to Pn;1 (see Figure B.1).Case 1.a: If Q = P3;2 then F =W2;n�2.Case 1.b: If Q 2 fP4;2; P4;3g then L2;2;L2;3 � F .Case 1.: If Q = P4;4 then L2;2 � F .Case 1.d: If Q = P4;5 then L2;3 � F .Case 2: jQj > 4.Then Q 6= Pk;1 for k � 5. So P4;i v Q for some i � 2. Hene fPn;1; P4;ig � Fand so F is a loser by Case 1. �5.3 Size Three FamiliesThe haraterizing set of families for size three families is listed in Table 5.3. In thetable, L3;1 = L1;2 and L3;2 = L2;3 and so they are both losers.Proposition 5.3 W3;1 = fP3;1; P4;4; P4;5g is a winning family.Proof: The winning strategy in Figure 5.3 shows that W3;1 is a winning family. �
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27W3 L3W3;1 L3;1 L3;2 L3;3 L3;4P3;1; P4;4; P4;5 P3;2 P3;1; P4;5 P3;1; P4;4; P5;10 P4;1; P4;4; P4;5
Table 5.3: Charaterizing set C3 of winners and losers for size three families.Proposition 5.4 The families L3;3 = fP3;1; P4;4; P5;10g and L3;4 = fP4;1;P4;4; P4;5g are losing families.Proof: L3;3 and L3;4 are defeated by DPC and DPE respetively, see Figure 5.1. There-fore they are both losing families.�Proposition 5.5 Every family of size three is ompletely determined as winning orlosing by omparison to C3.Proof: Let F be a family of size three. If Pn;1 =2 F for some n 2 N , then L3;1 � F .So let us assume that F = fPn;1; Q;Rg for some n � 3.We will onsider ases based on the sizes of Q and R. Note that by Remark 4.15,Q and R 6= P3;2.Case 1: jQj = 4 and jRj = 4Then Q;R � fP4;2; P4;3; P4;4; P4;5g sine the animals in fP1;1; P2;1; P3;1;P4;1g are related to Pn;1 (see Figure B.1).Case 1.a: If Q = P4;2 and R = P4;3 then L3;2 � fP3;1g � F .Case 1.b: If Q 2 fP4;2; P4;3g and R = P4;4 then L3;3 � fP3;1; P4;4g � F .Case 1.: If Q 2 fP4;2; P4;3g and R = P4;5 then L3;2 � F .Case 1.d: If Q = P4;4 and R = P4;5 then if n = 3 we have F = W3;1. If n � 4 thenL3;4 � F .Case 2: jQj � 4 and jRj � 5Sine Q and R are not skinny, there is a S � fP4;2; P4;3; P4;4; P4;5g with jSj � 2suh that S � fQ;Rg. Then E = L(fPn;1g [ S) � fPn;1g [ S � F with1 � E � 3.



28L4L4;1 L4;2 L4;3 L4;4 L4;5P3;2 P3;1; P4;5 P3;1; P4;4; P5;10 P4;1; P4;2; P4;4; P4;5 P4;1; P4;3; P4;4; P4;5
Table 5.4: Charaterizing set of winners and losers for size four families.Case 2a: jEj = 1Then L3;2 � E � F .Case 2b: jEj = 2Then by Proposition 5.2 and the fat that E has a polyomino of size four,L2;1;L2;2 or L2;3 � E . Then L3;1 = L2;1;L3;3 = L2;2 and L3;2 = L2;3.Therefore L3;i � L2;j � E � F for some i and j.Case 2: jEj = 3If E 6=W3;1 then L3;i � E � F for some i by Case 1. Then let us onsiderwhen E =W3;1. Then there exists a Q0 v Q and R0 v R suh that jQ0j = 4and jR0j = 5. From Figures B.1, B.2, B.3 we an see that either Q0 = P4;5and R0 = P5;4 or Q0 = P4;4 and R0 2 fP5;4; P5;8; P5;9; P5;10g. In the �rstase L3;2 � fPn;1; P4;5; P5;4g � F . In the seond ase, one of the followingours:L3;3;L3;4 � fPn;1; P4;4; P5;4g � FL3;4 � fPn;1; P4;4; P5;8g � F (n � 4 sine Pn;1 � P5;8)L3;4 � fPn;1; P4;4; P5;9g � F (n � 4 sine Pn;1 � P5;9)L3;3 � fPn;1; P4;4; P5;10g � F . �5.4 Size Four FamiliesThe haraterizing set of families for size four families is listed in Table 5.4. Thereare no winners of size four, thus the haraterizing set onsists of only losers. Notethat L4;1 = L3;1;L4;2 = L3;2 and L4;3 = L3;3 and so are losers.Proposition 5.6 The familiesL4;4 = fP4;1; P4;2; P4;4; P4;5g;L4;5 = fP4;1; P4;3; P4;4; P4;5g



29are losing families.Proof: L4;4 and L4;5 are defeated by DPF and DPG respetively, see Figure 5.1. There-fore they are losing families.�Proposition 5.7 Every family of size four is a losing family by omparison to C4.Proof: Let F be a family of size four. If Pn;1 =2 F for some n 2 N , then L3;1 � F . Solet us assume that F = fPn;1; P; Q;Rg for some n � 3.By Proposition 4.14 we an assume that n; jP j; jQj; jRj � 4. Then there is anS � fP4;2; P4;3; P4;4; P4;5g with jSj � 3 suh that S � fP;Q;Rg. Then E = L(fPn;1g[S) � fPn;1g [ S � F and 1 � jEj � 4.Case 1: jEj = 1.Then L4;2;L4;3 � E � F .Case 2: jEj = 2.Then one of the following holds:L4;2;L4;3;L4;4 � fPn;1; P4;2g = E � FL4;2;L4;3;L4;5 � fPn;1; P4;3g = E � FL4;3;L4;4;L4;5 � fPn;1; P4;4g = E � FL4;2;L4;4;L4;5 � fPn;1; P4;5g = E � F .Case 3: jEj = 3.Then one of the following holds:L4;2;L4;3 � fPn;1; P4;2; P4;3g = E � FL4;3;L4;4 � fPn;1; P4;2; P4;4g = E � FL4;2;L4;4 � fPn;1; P4;2; P4;5g = E � FL4;3;L4;5 � fPn;1; P4;3; P4;4g = E � FL4;2;L4;5 � fPn;1; P4;3; P4;5g = E � FL4;4;L4;5 � fPn;1; P4;4; P4;5g = E � F .Case 4: jEj = 4.Then one of the following holds:L4;3 � fPn;1; P4;2; P4;3; P4;4g = E � FL4;2 � fPn;1; P4;2; P4;3; P4;5g = E � FL4;4 � fPn;1; P4;2; P4;4; P4;5g = E � FL4;5 � fPn;1; P4;3; P4;4; P4;5g = E � F . �



Chapter 6Further Results
6.1 Size Five FamiliesDe�nition 6.1 An exterior boundary ell of an animal is an empty ell that is adja-ent to a ell in the animal. The boundary �(P ) (whih is alled the exterior boundaryin the literature) is the set of boundary ells. The perimeter of an animal is the sizej�(P )j of the animal's boundary. For Pn, the family of polyominoes of size n, we usethe notation p?(n) = minfj�(P )j j P 2 Png.

P1;1 P2;1 P3;2 P4;3 P4;4 P4;5Figure 6.1: All polyominoes P 2 Pn suh that j�(P )j = p?(n) for n � 4. Theboundary onsists of the empty ells.De�nition 6.2 A polyomino is an eonomial winner if the maker an ahieve thepolyomino in as many moves as the size of the polyomino.De�nition 6.3 A family is an eonomial winner if the maker an win within asmany moves as the size of the largest polyomino in the family.Proposition 6.4 The family P4 is an eonomial winner for the (1; 2) game.30



31Proof: The maker's strategy is to plae his mark adjaent to a previous mark of hisown. Let Mk represent the animal ahieved by the maker after the kth move. Wewill show that j�(Mk)j is greater than the number of possible marks available to thebreaker. Thus a polyomino of size k + 1 an be ahieved, see Figure 6.1. Table 6.1has the polyominoes P 2 Pn suh that j�(P )j = p?(n) for n � 4, along with thenumber of possible marks of the breaker. From the table we an see that a size fourpolyomino is always ahievable. �k p?(k) Breaker's marks1 4 22 6 43 7 64 8 8Table 6.1: p?(k) and the number of possible marks of the breaker in the (1,2)-ahievement game for 1 � k � 4.Proposition 6.5 The family Fn = fPn;1 [ (P4nP4;1)g = fPn;1; P4;2; P4;3; P4;4; P4;5g isa winning family for n � 4.Proof: Let the maker's strategy through the �rst four marks be to mark ells adjaentto a previous mark of his own. Sine P4 is a winner, the maker the an ahieve oneof P4;2; P4;3; P4;4 or P4;5 and win or ahieve P4;1 in four moves. If the breaker plaesher marks in suh a way as to leave an open spae beside P4;1 then the maker shouldmark in that open spae to win. If there is no plae to mark, then the marks looklike Figure 6.2. Note that the ells with the white boxes represent the marks of thebreaker. Then the maker an ahieve the situation in Figure 6.3. If either A or B arenot marked by the breaker, the maker an then ahieve P4;2 and thus will win. If thebreaker marks in both A and B then the maker an ontinue to ahieve the situationin Figure 6.3 and will eventually ahieve n-Skinny after n moves or P4;2 at some timewhen the breaker leaves an opening. �Note that for n � 3;Fn is not a family.6.2 General ResultsThese results are all for the (1,2) ahievement game on the retangular board.Proposition 6.6 If a family G onsists of animals of size �ve or greater, then it isa losing family.
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B

A

Figure 6.2: Game board position after being able to ahieve only P4;1.
C

A BFigure 6.3: In�nite board situation for a winning strategy of Fn.Proof: If F = fP3;1; P4;5g, then F � G. Sine F is a loser, by Proposition 5.1, G is aloser by Proposition 4.5. �This limitation at size �ve helps redue the number of possibly di�erent winningfamilies. Now the only ases to onsider are families that have some of the animalswith size less that �ve. We will study ases for families that have a spei� numberof animals with size less than �ve.Proposition 6.7 If F is a family of size greater than one that has only one polyominoP suh that jP j < 5 then F is lassi�ed.Proof: In our ases we will determine that F is winning or we will �nd a simpler familyS that is losing to lassify F as a loser. Note that P1;1 and P2;1 are not andidatesfor any families of size greater than one.If Pm;1 =2 F for some m, then F is a loser by Proposition 4.13. Thus assumePm;1 2 F for some m. We have the following ases:Case A: P = P3;1.Then F = fP3;1; n-squiggleg. So S = fP3;1; P4;5g � F .Case B: P = P3;2.Then F = fPn;1; P3;2g and therefore F is a winner.



33Case C: P 2 fP4;1; P4;2; P4;3g.Then if n-Squiggle =2 F , S = fP3;1g � F . If n-Squiggle 2 F , then S =fP3;1; P4;5g � F .Case D: P = P4;4.Then if n-Squiggle =2 F then S = fP3;1; P4;4g � F . If n-Squiggle 2 F , thenS = fP3;1; P4;4; P5;10g � F .Case E: P = P4;5.Then S = fP3;1; P4;5g � F .In eah ase where S � F ;S is a loser, and therefore F is a loser by Proposition 4.5.Every possible ase for F has been determined. �



Chapter 7In�nitude of Animals and SetsIn this hapter we extend the de�nition of animal to inlude polyominoes with in-�nitely many ells. We also extend the de�ntion of families to allow for these in�niteanimals. The relationv is extended in this setting, but as seen in Figure 4.1 this leadsto some unexpeted onsequenes. For example, the in�nite animals in the �gure aresurprisingly anestors of eah other.7.1 TransfamiliesDe�nition 7.1 A transfamily is a family with at least one in�nite animal. A familythat has no in�nite animals is alled a regular family.The relation � is also extended to this more general setting.De�nition 7.2 A transfamily T is a winner if S is a winner for all regular familiesS suh that S � T .De�nition 7.3 Let T be a transfamily. For eah in�nite animal T 2 T pik RT tobe a �nite animal suh that RT v T . The set R = fRT j T is an in�nite animal inT g [ fP 2 T j P is a �nite animalg is alled a �nite restrition of T .Proposition 7.4 A transfamily T is a winner if and only if every �nite restritionof T is a winner.Proof: If T is a winner, then every simpler regular family is a winner. Now every�nite restrition R is simpler than T , and therefore is a winner.Let us assume that every �nite restrition is a winner and let S be a regular familysuh that S � T . Then for eah T 2 T de�ne RT = T if T is �nite otherwise de�neRT to be an element of S suh that RT v T . If R = fRT j T 2 T g, then S � R.34



35
Figure 7.1: A winning transfamily.

� � �
� � �Figure 7.2: Two in�nite losing families.Now R is a �nite restrition of T and therefore is a winner. Thus by Proposition 4.5,S is a winner and hene T is a winner. �Example 7.5 The family in Figure 7.1 is a winning transfamily by Theorem 5.1 andProposition 7.4.7.2 In�nite FamiliesExample 7.6 The families in Figure 7.2 are in�nite losing families by DPA.De�nition 7.7 In Figure 7.2 the polyominoes in the �rst row are alled Ck and thepolyominoes in the seond row are alled Zk. Their sizes are de�ned as jZkj = jCkj =k + 2.Proposition 7.8 If Fn is a �nite restrition of I4, see Figure 7.4 with Pn;1 2 Fnthen Fn is a winner.Proof: From Proposition 6.4, F4 is a winner. Therefore for eah Fn for n � 4 we aneither ahieve P4;1 or P4;2 or win with P4;3; P4;4 or P4;5.
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(a) (b) () (d)Figure 7.3: Positions for the in�nite transfamily winning strategy.Let us �rst onsider the ase when we have ahieved P4;1. Using indution we willshow that we an either ahieve Pn+1;1 or Lk for some 4 � k � n. Figure 7.3(a) showsthe situation before the �fth move of the maker. If the breaker has not marked a ellontaining the letter A, then the maker an mark that ell and ahieve P4;3. If thebreaker has not marked a ell ontaining the letter B, then the maker an mark thatell and ahieve L4. Thus we an assume the eight marks by the breaker are in theells with the letters A and B. Now let us assume that we are in situation Figure 7.3(b)where the maker has marked Pj�1;1 and the empty squares denote the marks of thebreaker. The maker should now mark the ell ontaining A. If the breaker does notthen mark the ells ontaining B, the maker an ahieve Lj by marking one of these.However, if the breaker does mark both B's, we are again in situation Figure 7.3(b)but with Pj;1 now ahieved. Thus we will either ahieve Pn+1;1 or Lk.Let us now onsider the ase in Figure 7.3() where the maker has ahieved Lk.If the breaker has no mark in a ell ontaining the letter A, then the maker an markthat ell and ahieve P4;3.If the breaker has no mark in the ell ontaining the letterB, then the maker an mark that ell and ahieve P4;5 or Z2.If the breaker has nomark in a ell ontaining the letter C, then the maker an mark that ell and ahieveCk or Zk. Thus we an assume we are in the situation in Figure 7.3(d). Notie thatthe breaker has 2k + 2 marks to plae on the board while only 2k + 1 marks arefored moves. Thus the breaker annot stop the maker from marking either A or Bsine ells A and B are disjoint. In both ases, the maker marks ells to the right ofA or below B, depending on whih ell he marked, until he an turn. An indutiveargument similar to the one above shows that in either ase he will ahieve Pn+1;1 ifhe annot turn, or he will ahieve Ck or Zk for some 4 � k � n. �Corollary 7.9 The in�nite transfamily I4 is a winner.Sine a family exists that is an in�nite winning family, the goal of listing all�nite winning families is not obtainable. Instead, we should try and �nd a way to
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Figure 7.4: A winning in�nite transfamily, I4.



38haraterize them. This prompts the following de�nition.De�nition 7.10 A family I is a super n-winning family if for all winning families Fwith jFj � n, we have F � I.Proposition 7.11 The transfamily I4 in Figure 7.4 is a super 4-winning family.Proof: The winning families of size 1 are anestors of every polyomino greater thansize 1 and thus are simpler than any winning or losing family. The size 2 winningfamily F2, in Figure 5.2, is learly simpler than I4. The size 3 winning family F3, inFigure 5.3, is also learly simpler than I4. Sine there are no winning size 4 families,I4 is thus a super 4-winning family. �Proposition 7.12 There is a winning family for eah size n 2 N exept for n = 4.Proof: Let us �rst note that the previous hapters determine winning families for sizes1,2,3 and 5. Now from Proposition 7.8 we an see that Fn = fPn;1; P4;3g [ fUk; Zk j1 � k � n� 2g. De�ne Gn = Fn [ fP5;6g.It is lear that P5;6 is not related to any animal in Fn. Thus Gnis a family.Furthermore Gn is a winning family beause Gn � Fn. Note that for n = 3;F3 =G3 =W3;1. Therefore we are going to fous on those families where n � 4.It is easy to see that jFnj = 2(n� 1) and that jGnj = 2(n� 1)+1 for n � 4. ThusFn is a winning family of even size for all even numbers greater than or equal to 6.Similarly Gn is a winning family of odd size for all odd numbers greater than or equalto 7. Therefore the only family size for whih there is no winner is size 4. �



Chapter 8Programs
8.1 Polyomino CreationThis program is a support funtion that is used by other programs. It generates a listof the polyominoes up to a given size, n. These are ordered by lexiographi orderwithin eah size.To generate all the polyominoes up to size n, we merely need to add a ell ontoa polyomino of size n� 1. However, we need to onsider all possible polyominoes, sowe an't just add a ell in a single loation to eah polyomino. Instead we must adda ell to all possible plaes that might generate a di�erent polyomino. However, wedon't want to inlude too many polyominoes, so we need to normalize eah one thatis reated and see if we have aquired a new one.The polyominoes are stored in a vetor where eah element of the vetor is aduple of oordinates. Eah duple signi�es the loation of eah ell in the polyomino.For the list of polyominoes, there is a vetor of the polyomino vetors ordered bylexiographi order within eah size.To reate a new polyomino, the program takes a polyomino of size k and for eahell in the polyomino, adds a ell adjaent to it. On the retangular board, there arefour ways to be adjaent and eah of them is onsidered. In some ases, a ell wasadded in the same loation as a previously existing ell. When this happens, the sizeof the polyomino has not hanged, and therefore a new polyomino ould not havebeen reated.Let us assume that the ell was plaed in a loation that did not ontain anotherell. This possibly new polyomino is put into standard position and then insertedinto a set. If there is already a polyomino with that standard position then there isonly one opy beause of the properties of sets. This allows us to not worry aboutgenerating opies of the same polyomino.39



40The program begins with P1;1, follows the indiated proedure until all the animalsof size n� 1 have been onsidered as generators.There are a few things that ould be improved with this program. It urrentlydoes not hek to make sure that the polyominoes reated do not have holes. This isnot a major onern for this thesis beause the polyominoes onsidered are all size 6or less. Size 7 is the �rst size for whih there is a polyomino with a hole in it.Also many of the polyominoes have some symmetry. However, this program doesnot take that into aount. Therefore many of the adjaent plaements ould beignored if we ould in some way use the symmetry to narrow down the options. Sinethe polyominoes used here are smaller, this has not been a major onern. Yet if itould be sped up, it would be easier to hek di�erent things.8.2 Paving CreationThe most important program that we reated searhes for a paving to a set of polyomi-noes. The program attempts to generate a double paving based on a size parameterand a list of polyominoes under onsideration. The paving that is generated is outputto a data �le that an be used to generate a piture.Required for the program to run is input that is read from the onsole. We use a�le that ontains all the data to inrease the speed of input and simplify the proess.The �le onsists of integers in a spei� order. First are two integers that representthe size of the board the x size then y size. After that is a list of the polyominoesunder onsideration. These integers represent the polyominoes in the list generatedby a separate lass desribed in the previous setion.The polyominoes are retrieved from the program and all ips, rotations and re-etions for eah polyomino are stored in a vetor, say Fam. Then there is a pairplaed in the enter of the board. Eah of these ells is then plaed in a vetor alledSingle whih stores all the ells that are related to a single other ell. Sine this is adouble paving, there is also a vetor alled Double that ontains the ells related totwo other ells.Now the program onsiders all plaements of the polyominoes in Fam that share apaired ell. This ensures that we onsider only plaements that relate to the portion ofthe paving that has already been reated. For eah of these plaements, the programalulates the number of pairs that an be plaed within the polyomino and thus killit. It also alulates the distane from the enter of the board to the enter of thepolyomino. Then the plaement that has the least number of options for pairs and islosest to the enter is onsidered. That is, the �rst of the killing pairs is suggestedfor plaement in the paving.When a pair is in line for plaement in the paving, the ells of the pairs are going



41to be assoiated with another ell. Thus if either ell is in the Double vetor, theyare already assoiated with two ells and an not have a third assoiation. Thereforethat pair would be invalidated. If neither of the ells are in Double, then they aremoved from Single to Double or into Single, whihever is appropriate.If there are no pairs, then there is a plaement of a polynomial from Fam withinthe boarders of the paving whih has no pairs whih will kill it. This means that thepaving will not defeat the polynomial and therefore the paving is no good. At thistime, the program goes bak a level and tries a di�erent pair from the most reentset of possible pairs.If there are no plaements whih do not have a killing pair in them, then thepaving is done and the program exits. However, the outer border of the paving thatis generated is not always killing for every polyomino. This is beause the programexits at the �rst opportunity and so does not hek all of the polyominoes fromFam. In Figure 8.1 there is an example of output from the program designed todefeat P4;3; P4;4; P4;5; P5;1 and P5;5. Notie that there are di�erent patterns within thepaving that was reated. Some of them are the same pattern with just a rotation orskewed and some are ompletely di�erent. After a paving of this sort is reated, wethen go through, look for a pattern that is within the enter of the paving (ignoringabout 2 boundary ells) and try to generate a double paving from the idea in thepaving.In Figure 8.2 there are two pavings that ame from Figure 8.1. The �rst is DPEwhih defeats the family that was used to generate the paving, see Table B.1. Theother paving is not given a name beause it is not as useful as DPE. When both of thepavings are run through the paving heking program (see next setion), DPE defeatsall but two animals of size four to �ve. The other one defeats all but �ve, and two ofthe �ve not defeated are the ones that DPE didn't defeat. Therefore, the other pavingis not as powerful as DPE.8.3 Paving ChekingThe ode in this setion is used to determine whether a paving defeats a spei� set.Notation 8.1 jvij := (jxij; jyij)(vx; vy) := jv1j+ jv2jjP jx := width of a polyomino P in standard position.jP jy := height of a polyomino P in standard position.In Figure 8.3 we see vetors that represent the fundamental vetors of a paving.A paving an be represented by any of 4 pairs of fundamental vetors, a positiveand negative for eah of two vetors. Thus there are 4 andidates for the pair of
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Figure 8.1: A paving generated by the paving program on a 30x30 board forP4;3; P4;4; P4;5; P5;1 and P5;5
DPE Other pavingFigure 8.2: Two pavings that an be extrated from Figure 8.1fundamental vetors for any paving. I restrit the onsideration for fundamental
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v1 = jv1jjv2jv2
jv1j+ jv2j = (vx; vy)

Figure 8.3: The fundamental vetors of a 2-paving and their relation to onstruts inthe paving heking program. Note that jvkj = (jxkj; jykj)
Figure 8.4: 2-paving as referene for problem loations in a paving.vetors to those vetors whose angles � are suh that 0 � � < �2 . This restritionleaves only two vetors. The vetor with the smallest angle � is v1 and the otherv2. Therefore there is a unique representation of the fundamental vetors of a pavingthat is used by this program.The size of the board is ritial to the suess of the program. The board must belarge enough to aommodate all plaements of all on�gurations of eah polyominounder onsideration. A problem area with a paving is often found in the boundariesand orners of adjaent opies of a fundamental region of the paving. In Figure 8.4the fundamental region of the paving is apparently strong, but in the orner of fouropies, P4;4 an be plaed and therefore the paving does not kill P4;4. Thus the boardmust be at least twie as tall and twie as wide as any paving to inlude the ornersand the boundaries in the searh region.To determine the size of the board, a variable max is reated suh that max =maxfvx; vy; jP jx; jP jyg for eah polyomino P in the set under onsideration. Thus thelargest measure of any polyomino is a fator in determining the size of the board.One this max is generated, the board is generated as a square with sides of length2 �max+ 1. This is at least twie as tall as the largest polyomino in the set and thelargest measure on the paving. The addition of one more unit allows a little extraroom along the edges for heking, but not so muh that time is wasted in redundantplaements.



44One the size has been determined, the paving is opied along its fundamentalvetors an appropriate number of times in appropriate plaes so that every ell onthe board is related as de�ned by the fundamental set. Through this proess, ellsoutside the required region ould have been related. To help with proess time, theprogram removes any related ells that fall outside the de�ned square board.After this lean up proess is ompleted this program proeeds to determine ifthe paving under onsideration kills the polyominoes under onsideration. Eah ofthe polyominoes is proessed singly with all its ips, rotations and reetions. Eahof these transformations is shifted around the board. If there is a plaement ofa transformation that does not ontain a pair, then the paving does not kill thispolyomino. A data �le is output whih ontains the board and the plaement thatwas not killed. Then the next polyomino in the set is onsidered.If a transformation is killed, the next transformation is onsidered and shiftedaross the board. When all transformations have been shifted and killed, then thepaving kills the polyomino and the next one in the set is onsidered.
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Appendix AC++ Code
A.1 Postsript Generating CodeThis ode reates the postsript �les for polyominoes and k-pavings. The ode readsin an input �le that has loations of ells to be reated and designations for di�erentbasi ells.The �rst value spei�es the size of the boxes to be reated. Then there is eithera ode for a paving to be reated or a list of ommands. If it is the paving ode, the�le has the vetors and the number of opies to generate. The rest of the �le ontainsthe pairs and any further marks in the piture.If it is not a paving, then there is a ode followed by loation values "x y" and ifthere is another parameter it is on the end.// ompile with// g++ -O boxa.C -lg2/*This program takes a file in speial format and reates apostsript graphi's fileThe file starts with an integer for magnifiation.Used for spaing to make letters fit within eah box.The default value of 12 is given for an integer value of 0.17 is usually used when any text in to be inside the box.The next lines need to start with a number 0-7 for thefollowing funtions0: An empty box with integer oordinates following in x,y1: A tiling of one olor with integer oordinates of thetwo boxes to be linked in x,y and x,y2: A 2nd tiling olor with integer oordinates as previous3: A box that has been marked by the maker with integeroordinates x,y4: A box that has an empty square (to represent thebreaker's mark) with integer oordinates x,y5: A box with letters in it with integer oordinates x,y49



50followed by the letters to be plaed within the box6: A horizontal ellipsis with integer oordinates x,y7: A vertial ellipsis with integer oordinates x,y8: A paving is to be reatedThere is no terminating line*/#inlude <g2.h>#inlude <g2_PS.h>#inlude <math.h>#inlude <set>#inlude <string>#inlude <vetor>#inlude <stdio.h>#inlude <iostream>#inlude <algorithm>using namespae std;int dev, size;int olor[3℄;bool Multi_Paving = false;double X[2℄, Y[2℄;vetor <int> pairs;vetor <double> boxes;onst double num = 1;onst double denom = 2;onst double xx = 10;onst double yy = 10;void boxf(double x, double y, double s, bool filled){double points[8℄;points[0℄ = xx + x - s; //Upper left orner of boxpoints[1℄ = yy + y + s;points[2℄ = xx + x + s; //Upper right orner of boxpoints[3℄ = yy + y + s;points[4℄ = xx + x + s; //Lower right orner of boxpoints[5℄ = yy + y - s;points[6℄ = xx + x - s; //Lower left orner of boxpoints[7℄ = yy + y - s;if (!filled)g2_polygon(dev, 4, points);elseg2_filled_polygon(dev, 4, points);}void Write(double a, double b, har *t){int i = 0; //ounter for length of tint j = 0; //ounter for Capital stringint k = 0; //ounter for lower ase string



51float shift; //amount to raise or lower the seond rowhar g[6℄;har h[6℄;for (int m = 0; m < 7; m++){g[m℄ = 0; //lear upperase stringh[m℄ = 0; //lear lowerase string}if (t[0℄ == 0)out << "Empty string";for (i; t[i+1℄ > '�'; i++); //ount size of tif (i < 3) //if less that 4 haratersg2_string(dev, xx + a - .4, yy + b - .25, t);else{for (int m = 0; m < i + 1; m++)if ((t[m℄ >= 'A') && (t[m℄ <= 'Z')) //If a apital{g[j℄ = t[m℄;j++;}else if ((t[m℄ >= 'a') && (t[m℄ <='z')){h[k℄ = t[m℄;k++;}else {}//nothingif (j != 0){g2_string(dev, xx + a - .4, yy + b + .1, g);shift = -.3; //There are aps, shift lower ase down}elseshift = -.1; //No aps, only shift lower aseg2_string(dev, xx + a - .4, yy + b + shift, h);}}void boxi(int i, int j, har *t){double x = i;double y = j;boxf(x, y, .5, 0); //blank boxif (t[0℄ == '!') //mark in boxboxf(x, y, .3, 1);else if (t[0℄ == '?') //breaker's mark in boxboxf(x, y, .3, 0);else if (t[0℄ != 0) //box with writingWrite(x, y, t);}



52void domino(double i, double j, double k, double l){double m = (i + k) / 2.0; // midpoint x-valuedouble n = (j + l) / 2.0; // midpoint y-valuedouble x = xx + num*(i + m) / denom; // end pointsdouble y = yy + num*(j + n) / denom;double w = xx + num*(k + m) / denom;double z = yy + num*(l + n) / denom;g2_line(dev, x, y, w, z);}void MakeDominoes(int olored){double p1, p2, p3, p4;int i, n, m;g2_set_line_width(dev, 4);if (olored)g2_pen(dev, olor[2℄);for (i = 0; i < pairs.size(); i+=4)domino(pairs[i℄, pairs[i+1℄, pairs[i+2℄, pairs[i+3℄);if (Multi_Paving){g2_pen(dev, olor[2℄);n = 1;for (m = 0; m < 2; m++){for (n; n < size/2; n++)for (i = 0; i < pairs.size(); i+=4){p1 = pairs[ i ℄ + m * X[0℄ + n * Y[0℄;p2 = pairs[i+1℄ + m * X[1℄ + n * Y[1℄;p3 = pairs[i+2℄ + m * X[0℄ + n * Y[0℄;p4 = pairs[i+3℄ + m * X[1℄ + n * Y[1℄;domino(p1, p2, p3, p4);}n = 0;}g2_pen(dev, olor[1℄);}g2_set_line_width(dev, 1);}void Arrow(double a, double b){double four_d, first, send, middle, j, k, m, n, s, df;df = xx - .5;four_d = 4.0 * sqrt(a*a + b*b);middle = 1 - sqrt(3.0)/four_d;first = a / four_d;



53send = b / four_d;m = a * middle + df;n = b * middle + df;j = a + df;k = b + df;s = abs(a) + abs(b);g2_filled_triangle(dev, j, k, m + send, n - first, m - send,n + first);g2_line(dev, df, df, j - (a * .3)/s, k - (b * .3)/s);}void MakeRegion(){int x_min, x_max, n;double 1, 2;double m_x;x_min = 0;x_max = int(X[0℄ + Y[0℄);if (Y[0℄ < 0){x_min = int(Y[0℄);x_max = int(X[0℄);}m_x = X[1℄ / X[0℄;for (int b = 0; b < X[1℄ + Y[1℄; b++)for (int a = x_min; a < x_max; a++)if ((b >= m_x * a) && (b < m_x * (a - Y[0℄) + Y[1℄)&& (Y[0℄ * b <= Y[1℄ * a)&& (Y[0℄ * (b - X[1℄) > Y[1℄ * (a - X[0℄))){boxes.push_bak(a);boxes.push_bak(b);}for (int i = 0; i < boxes.size(); i+=2)boxf(boxes[i℄, boxes[i+1℄, .5, 0);n = 1;if (size > 1)for (int m = 0; m < 2; m++){for (n; n < size/2; n++)for (int i = 0; i < boxes.size(); i+=2){1 = boxes[ i ℄ + m * X[0℄ + n * Y[0℄;2 = boxes[i+1℄ + m * X[1℄ + n * Y[1℄;boxf(1, 2, .5, 0);}n = 0;}g2_set_line_width(dev, 1.2);



54Arrow(X[0℄, X[1℄);Arrow(Y[0℄, Y[1℄);g2_set_line_width(dev, 1);}void ellipsis(double a, double b, int dir){double l, m, x, y;x = xx + a;y = yy + b;swith (dir){ase 6: //horizontal ellipsisl = x + .25;m = x - .25;g2_filled_irle(dev, l, y, .05);g2_filled_irle(dev, m, y, .05);break;ase 7: //vertial ellipsisl = y + .25;m = y - .25;g2_filled_irle(dev, x, l, .05);g2_filled_irle(dev, x, m, .05);break;}g2_filled_irle(dev, x, y, .05);}void readin(){typedef set<har> Situations;vetor <Situations> Cells;int i, j, k, l, a;int olored = 0;har text[20℄;double s = 0.5;double points[8℄;double var1, var2;bool failure = false;Situations CurCell, All, temp;while (in >> a){swith (a){ase 0: //empty boxin >> i >> j;boxi(i, j, "");break;ase 2: //1st tiling markerolored = 1;ase 1: //2nd tiling markerfor (j = 0; j < 4; j++){in >> i;



55pairs.push_bak(i);}break;ase 3: //Box with maker's markin >> i >> j;boxi(i, j, "!");break;ase 4: //Box with breaker's markin >> i >> j;boxi(i, j, "?");break;ase 5: //Box with lettersin >> i >> j >> text;boxi(i, j, text);CurCell.lear(); //empty the setfor (int n = 0; text[n℄; n++){text[n℄ = tolower(text[n℄);CurCell.insert(text[n℄);}Cells.push_bak(CurCell);set_union(CurCell.begin(), CurCell.end(), All.begin(), All.end(),inserter(temp, temp.begin()));All = temp;temp.lear(); //empty temporary setbreak;ase 6: //horizontal ellipsisase 7: //vertial ellipsisin >> var1 >> var2;ellipsis(var1, var2, a);break;ase 8: //pavingin >> size >> X[0℄ >> X[1℄ >> Y[0℄ >> Y[1℄;if (size > 1)Multi_Paving = true;MakeRegion();break;default:out << "Error, inorretly formatted file.\n";}}MakeDominoes(olored);int ount = All.size(); //total number of lettersfor (i = 0; i < Cells.size(); i++)for (j = i + 1; j < Cells.size(); j++){set_union(Cells[i℄.begin(), Cells[i℄.end(),Cells[j℄.begin(), Cells[j℄.end(),inserter(temp,temp.begin()));if (ount == temp.size())out << "Not a winning strategy: " << i << " " << j << endl;temp.lear();}}int main(){dev=g2_open_EPSF("boxa.ps");



56olor[0℄=g2_ink(dev, 0, 1, 1);//teal tile olorolor[1℄=g2_ink(dev, 0, 0, 0);//blak tile olorolor[2℄=g2_ink(dev, .6, .6, .6); //grey tile olorg2_set_font_size(dev, 10);double magnif;in >> magnif;if (magnif == 0) magnif = 12;g2_set_oordinate_system(dev, 0, 0, magnif, magnif);g2_pen(dev, olor[1℄);readin();g2_lose(dev);return 0;}A.2 Paving Code for a Spei� FamilyThis ode generates a 2-paving for a family./*The program is designed to reate a double paving that willestablish a strategy for the breaker that will defeat all theanimals in a given family. This program allows for triplesof pavings, that is, three mutually joined ells. A file withthe following struture is needed.Dimensions of region that are desired to be paved and thenumber of the animals in the family that are going to beonsidered given in size then lexiographi order.dim_x dim_yIf a paving is found, the program outputs a file (tile1.dat)with the dimensions dim_x dim_y then the size of the pavingin number of pairs and a list of ordered pairs that oinidewith the paired ells of a paving.*/#inlude "state.h"#inlude "fstream"#inlude "reateanimals.h"#inlude "STLmore.h"#inlude <iostream>onst int xmin = 0;onst int ymin = 0;int xmax;int ymax;int levelmax;int level = 0;int tilenum = 0;Tanimal paving;Tanimal Double;



57Tanimal Single;Tstate state;Tstates transfers;Tstatesset shiftedtransfersset;Tstates shiftedtransfers;void writetile (void){tilenum++;ofstream os ("tile1.dat");os << xmax + 1 << " " << ymax + 1 << " " << paving.size();for (int i = 0; i < paving.size (); i++)if ( i % 6 == 0)os << endl;os << paving[i℄[0℄ << " " << paving[i℄[1℄ << " ";os.lose ();}void PavePrint(){string filename = "level-" + all2string(level) + ".dat";ofstream os (filename._str());os << xmax + 1 << " " << ymax + 1 << " " << paving.size();for (int i = 0; i < paving.size (); i++)if ( i % 6 == 0)os << endl;os << paving[i℄[0℄ << " " << paving[i℄[1℄ << " ";os.lose ();string ommand1 = "./paving/Shader < " + filename;string ommand2 = "mv Pave.ps Level-" + all2string(level) + ".ps";system(ommand1._str());system(ommand2._str());out << level << endl;}bool inside (onst Tstate & state){Tell ll = llorner(state);if (ll[0℄ < xmin) return false;if (ll[1℄ < ymin) return false;Tell ur = urorner(state);if (ur[0℄ > xmax) return false;if (ur[1℄ > ymax) return false;return true;}bool killed (onst Tstate & state){for (int i = 0; i < paving.size(); i++)if (binary_searh(BE(state.ore), paving[i℄)){



58i++;if (binary_searh(BE(state.ore), paving[i℄))return true;}elsei++;return false;}void findshifts (Tstate & state){Tstate shiftstate;int i, j;if (paving.size() == 0){Tell mid;mid.push_bak((xmin + xmax) / 2);mid.push_bak((ymin + ymax) / 2);shiftstate = state;shift(shiftstate, mid);shiftedtransfersset.insert(shiftstate);return;}set < Tell> ollet;Tanimal::iterator it;Tanimal::iterator jt;ollet.lear ();for (i = 0; i < paving.size(); i++)for (j = 0; j < state.ore.size(); j++){Tell ell = make_ell (paving[i℄[0℄ - state.ore[j℄[0℄,paving[i℄[1℄ - state.ore[j℄[1℄);ollet.insert (ell);}set < Tell >::iterator itt;for (itt = ollet.begin (); itt != ollet.end (); itt++){ // go through the shiftsshiftstate = state;shift (shiftstate, *itt);if (inside(shiftstate) and ! killed(shiftstate))shiftedtransfersset.insert (shiftstate);}}bool InSquare(Tell one, Tell two){//ordered ells, ie two > oneint diff1 = two[0℄ - one[0℄;int diff2 = two[1℄ - one[1℄;if (diff1 > 2 || diff2 > 2)return false;return true;



59}bool Pavable(Tell first, Tell seond){if (binary_searh(BE(Double), first) || binary_searh(BE(Double), seond))return false;return true;}double distane(Tanimal & Poly){double d;double mid_x, mid_y;double nt_x, nt_y;int n = Poly.size() - 1;Tell ll = Poly[0℄;Tell ur = Poly[n℄;mid_x = (ll[0℄ + ur[0℄)/2.0;mid_y = (ll[1℄ + ur[1℄)/2.0;nt_x = xmax/2.0;nt_y = ymax/2.0;d = (mid_x - nt_x)*(mid_x - nt_x) + (mid_y - nt_y) * (mid_y - nt_y);return d;}void findkillers(onst Tstate & animal, Tanimal & pairs,double & dist){int i, j, size;Tanimal diff, spetre;set_differene(BE(animal.ore), BE(Double), INS(diff));size = diff.size();spetre = animal.ore;dist = distane(spetre);for (i = 0; i < size - 1; i++)for ( j = i + 1; j < size; j++)if (InSquare(diff[i℄,diff[j℄)){pairs.push_bak(diff[i℄);pairs.push_bak(diff[j℄);}}void Remove(Tell Cell){Tanimal::iterator it;it = lower_bound(BE(Double),Cell);if (it != Double.end() && *it == Cell)



60{Double.erase(it);insertsorted(Single, Cell);}else{it = lower_bound(BE(Single), Cell);Single.erase(it);}}void Store(Tell Cell){Tanimal::iterator it;it = lower_bound(BE(Single), Cell);if (it != Single.end() && *it == Cell){Single.erase(it);insertsorted(Double, Cell);}elseinsertsorted(Single,Cell);}void redue(Tanimal & bestdom){int i, j;Tstate state1, state2;for (i = 0; i < bestdom.size() - 3; i++){state1.ore.push_bak(bestdom[i℄);state1.ore.push_bak(bestdom[i + 1℄);normal(state1);i++;for (j = i + 1; j < bestdom.size() - 1; j++){state2.ore.push_bak(bestdom[j℄);state2.ore.push_bak(bestdom[j + 1℄);normal(state2);j++;if (state1 == state2){j--;bestdom.erase(bestdom.begin() + j);bestdom.erase(bestdom.begin() + j);j--;}}}}void add_domino (){int i;



61level++;if (level > levelmax)levelmax = level;double dist, best_dist;Tanimal bestdominoes(100);Tanimal pairs;Tstate bestposition;shiftedtransfersset.lear ();for (i = 0; i < transfers.size (); i++)findshifts (transfers[i℄);shiftedtransfers.lear();set2vetor (shiftedtransfersset, shiftedtransfers);if (shiftedtransfers.size() == 0){writetile();//return;exit(1);}best_dist = xmax*xmax + ymax*ymax; //lear old distanefor (i = 0; i < shiftedtransfers.size(); i++){pairs.lear();findkillers(shiftedtransfers[i℄, pairs, dist);if (pairs.size() > bestdominoes.size())ontinue;if (pairs.size() == bestdominoes.size() && dist >best_dist)ontinue;bestdominoes = pairs;best_dist = dist;if (bestdominoes.size() == 0){if (level >= levelmax)PavePrint();level--;return;}}if (paving.size() == 0){}//redue(bestdominoes);for (i = 0; i < bestdominoes.size(); i+=2){paving.push_bak(bestdominoes[i℄);paving.push_bak(bestdominoes[i + 1℄);Store(bestdominoes[i℄);Store(bestdominoes[i + 1℄);add_domino();paving.pop_bak();paving.pop_bak();Remove(bestdominoes[i℄);Remove(bestdominoes[i + 1℄);}



62if (level >= levelmax)PavePrint();level--;}int main (void){int dim_x, dim_y;int anim; //# for animal to paveTstates animals;Tstatesset transferset;reateanimals (6, animals);in >> dim_x >> dim_y;xmax = dim_x - 1;ymax = dim_y - 1;while (in >> anim){state = animals[anim℄;transferall (state, transferset);set2vetor (transferset, transfers);transferset.lear();}add_domino ();return 0;}A.3 Created Paving Postsript CodeThis ode takes output from the paving reation ode and generates a post-sript�le with speial olors. These olors are used to determine the approximate time apair was generated by the program. The olors start dark and beome lighter as thepairs progress later into the paving. The olors are �rst red, then green and �nallyblue. This also helps understand if the program is atually reating a paving fromthe inside out or if it is instead going to the boundary.// ompile with// g++ -O3 Zpave.C -lg2/*This program takes a file in speial format and reates apostsript graphi's file of a paving file reated by the Paverprogram.The format is the dimensions of the region to be drawn inintegers in the following format:dim_x dim_yFollowed by the number of pairs of ells.



63Then a series of pairs of ells.There is no terminating line*/#inlude <g2.h>#inlude <g2_PS.h>#inlude <math.h>#inlude <set>#inlude <stdio.h>#inlude <algorithm>#inlude <vetor>#inlude <iostream>using namespae std;int dev;onst double num = 7;onst double denom = 8;onst double xx = 10;onst double yy = 10;void box(double x, double y, double s){double points[8℄;points[0℄ = xx + x - s; //Upper left orner of boxpoints[1℄ = yy + y + s;points[2℄ = xx + x + s; //Upper right orner of boxpoints[3℄ = yy + y + s;points[4℄ = xx + x + s; //Lower right orner of boxpoints[5℄ = yy + y - s;points[6℄ = xx + x - s; //Lower left orner of boxpoints[7℄ = yy + y - s;g2_polygon(dev, 4, points);}void domino(int i, int j, int k, int l){double m = (i + k) / 2.0; //midpoint x-valuedouble n = (j + l) / 2.0; //midpoint y-valuedouble x = xx + (num*i + m) / denom; //end pointsdouble y = yy + (num*j + n) / denom;double w = xx + (num*k + m) / denom;double z = yy + (num*l + n) / denom;g2_line(dev, x, y, w, z);}void readin(){int olor, i, j, k, l;int width, height, length, ount;float ol[3℄, d;int lo = 0;



64in >> width >> height >> length;ount = length / 6 + 1;d = .8 / double(ount);for (int m = 0; m < width; m++)for (int n = 0; n < height; n++)box(m, n, .5);ol[0℄ = .2 - d;ol[1℄ = 0;ol[2℄ = 0;g2_set_line_width(dev, 3);while (in >> i){ol[lo℄+=d;in >> j >> k >> l;olor = g2_ink(dev, ol[0℄, ol[1℄, ol[2℄);g2_pen(dev, olor);domino(i, j, k, l);if (ol[lo℄ >= 1){ol[lo℄ = 0;lo++;ol[lo℄ = .2 - d;}}}int main(){dev=g2_open_EPSF("Pave.ps");g2_set_font_size(dev, 10);double magnif;magnif = 10;g2_set_oordinate_system(dev, 0, 0, magnif, magnif);readin();g2_lose(dev);return 0;}A.4 Paving Cheking CodeThis ode heks a partiular 2-paving with a spei� animal to see if the animal isdefeated by the 2-paving.



65A.4.1 Cheking Code#inlude <iostream>#inlude <fstream>#inlude <set>#inlude <string>#inlude <vetor>#inlude <algorithm>#inlude "state.h"#inlude "STLmore.h"using namespae std;set < Tstate > transs;vetor < Tell > pairs;vetor < Tell > paving;int R, x[2℄, y[2℄;int num = 0;void FailPi(Tstate & state){string name;num++;name = "fail" + all2string(num) + ".dat";ofstream os (name._str());os << "0" << endl;for (int i = 0; i < state.ore.size(); i++)os << "3 " << state.ore[i℄[0℄ << " " << state.ore[i℄[1℄ << endl;for (int i = 0; i < paving.size(); i+=2)os << "1 " << paving[i℄[0℄ << " " << paving[i℄[1℄ << " "<< paving[i+1℄[0℄ << " " << paving[i+1℄[1℄ << endl;os.lose ();}void CurBoard(void){ofstream os ("board.dat");os << "0\n"; //boxafor (int i = 0; i < paving.size(); i+=2)os << "1 " << paving[i℄[0℄ << " " << paving[i℄[1℄ << " "<< paving[i+1℄[0℄ << " " << paving[i+1℄[1℄ << endl;}void CleanUp(){vetor < Tell >::iterator i;Tell temp1, temp2;for (i = paving.begin(); i != paving.end(); i++){temp1 = (*i);



66temp2 = (*(i+1));if ((temp1[0℄ < 0 && temp1[1℄ < 0 && temp2[0℄ < 0 && temp2[1℄ < 0) ||(temp1[0℄ > R && temp1[1℄ > R && temp2[0℄ > R && temp2[1℄ > R)){paving.erase(i);paving.erase(i);i--;}elsei++;}}void Region(void){Tell temp1, temp2;int M_x, M_y, m_y, denom;denom = x[0℄ * y[1℄ - x[1℄ * y[0℄;M_x = (R * (y[1℄ - y[0℄))/ denom + 1;M_y = (R * x[0℄)/ denom + 1;m_y = - (R * x[1℄)/ denom - 1;for (int i = 0; i < pairs.size(); i+=2)for (int m = 0; m < M_x; m++)for (int n = m_y; n < M_y; n++){temp1 = pairs[i℄;temp2 = pairs[i+1℄;temp1[0℄ = temp1[0℄ + m * x[0℄ + n * y[0℄;temp1[1℄ = temp1[1℄ + m * x[1℄ + n * y[1℄;paving.push_bak(temp1);temp2[0℄ = temp2[0℄ + m * x[0℄ + n * y[0℄;temp2[1℄ = temp2[1℄ + m * x[1℄ + n * y[1℄;paving.push_bak(temp2);}}bool tiled (Tstate state){ // return 1 if tile works for all shifts 0 if notTell C1, C2;Tstate shstate = state;for (int j = 0; j < R; j++) // shift the animal aroundfor (int k = 0; k < R; k++){shstate = state;shift (shstate, make_ell (k, j));bool hasinshift = false;for (int i = 0; i < paving.size (); i += 2){C1 = paving[i℄;C2 = paving[i+1℄;if (binary_searh (BE (shstate.ore), C1) and



67binary_searh (BE (shstate.ore), C2))hasinshift = true;}if (!hasinshift){FailPi(shstate);return false;}}return true;}bool hekanimal (Tstate & state){set < Tstate >::iterator i;transs.lear ();transferall (state, transs);for (i = transs.begin (); i != transs.end (); i++)if (!tiled ((*i)))return false; // the transform didn't have a dominoreturn true;}void ReadIn(){int a, b;ifstream file;file.open ("tile.dat");file >> x[0℄ >> x[1℄ >> y[0℄ >> y[1℄ >> R;while (file >> a){file >> b;pairs.push_bak (make_ell (a, b));}file.lose();Region();}bool loser (Tstate state){bool soreloser = false;paving.lear();pairs.lear();ReadIn();if (hekanimal (state))soreloser = true;return soreloser; //true if paved}



68void loserfam(Tfam & family){bool soreloser = false;paving.lear();pairs.lear();ReadIn();for (int i = 0; i < family.size(); i++)if (hekanimal (family[i℄)){soreloser = true;out << "Paved" << endl;}elseout << "Not Paved " << i << endl;}A.4.2 Paving File Generator#inlude <iostream>#inlude <fstream>#inlude <vetor>#inlude "state.h"#inlude "STLmore.h"#inlude "Tilehek.h"#inlude "reateanimals.h"using namespae std;Tstates animals;vetor <Tstate> family;void MakeFile(har filename[℄){int anim;int x[2℄, y[2℄;int temp, max, t1, t2, t3, t4;Tell orner;Tstate state;ifstream infile (filename);ofstream outfile ("tile.dat");//ignore the values that are used to print the paving.infile >> temp >> temp >> temp >> x[0℄ >> x[1℄ >> y[0℄ >> y[1℄;if (x[0℄ + y[0℄ <= x[1℄ + y[1℄)max = x[1℄ + y[1℄;elsemax = x[0℄ + y[0℄;while (in >> anim){state = animals[anim℄;



69orner= urorner(state);if (orner[0℄ > max)max = orner[0℄;else if (orner[1℄ > max)max = orner[1℄;family.push_bak(state);}outfile << x[0℄ << " " << x[1℄ << endl;outfile << y[0℄ << " " << y[1℄ << endl;outfile << 2 * max + 1 << endl;while (infile >> temp) //readin the 1{infile >> t1 >> t2 >> t3 >> t4;outfile << t1 << " " << t2 << " " << t3 << " " << t4 << endl;}infile.lose();outfile.lose();}int main(void){har filename[50℄;bool paved;reateanimals (6, animals);in.getline(filename, 50);MakeFile(filename);for (int i =0; i < family.size(); i++){paved = loser(family[i℄);if (paved)out << "Paved" << endl;elseout << "Not Paved " << i << endl;}return 0;}A.5 PERL CodeThis is the PERL ode that implemented various other ode for tile reation andheking purposes.



70A.5.1 Paving GenerationThis setion ontains ode whih is used to run the paving reating program. Thesript gives the program di�erent sized boards to onsider up to a ertain size. Whena the program �nishes, the sript reates a postsript �le from the output and renamesthe �le to orrespond to the size of the board that had been onsidered.#!/usr/bin/perl$filename = "fam.txt";for ($i = 20;$i <= 30;$i++){open FAM, ">$filename";print FAM "$i $i 7 8 9 10 11 13 14 15 19 20";lose (FAM);$a=qx[nie -15 ./paving/Paver < $filename℄;print "$i - $i:$a\n";if ($a = 1) {qx[mv tile1.dat Pave$i-$i.dat℄;}else {exit();}}A.5.2 PolyominoesThis ode is used to generate all the pitures of the polyominoes in the diretoryPoly. Most of the programs that reate the other pitures is the thesis are struturedsimilarly.#!/usr/bin/perl�names = <./Poly/*.txt>;system "g++ -O4 ../boxa.C -lg2";foreah $name (�names){$poly = $name;$poly = ~ s [\.txt℄()g;$a=qx[./a.out < Poly/$poly.txt℄;print "$poly: $a\n";qx[mv boxa.ps poly-ps/$poly.ps℄;}̀rm boxa.ps`;A.5.3 Paving pituresThis ode reads all the �les in the Tiles diretory and generates pitures of the pavingsand pitures that have pavings. Note that the same program is used for tese pituresand the polyomino pitures.#!/usr/bin/perl�names = <./Tiles/*.txt>;



71system "g++ -O4 ../boxa.C -lg2";foreah $name (�names){$tile = $name;$tile = ~ s [\.txt℄()g;$a=qx[./a.out < Tiles/$tile.txt℄;print "$tile: $a\n";qx[mv boxa.ps tile-ps/$tile.ps℄;}̀rm boxa.ps`;



Appendix BPolyomino information
Pn;i DPA DPB DPC DPD DPE DPF DPG DPH DPI DPJP3;1 � � �P3;2 �P4;1 � � � � � �P4;2 � � � � �P4;3 � � � � � �P4;4 � � � � � � � � �P4;5 � � � � � � � �P5;1 � � � � � � � � �P5;2 � � � � � � � �P5;3 � � � � � � � � �P5;4 � � � � � � � � � �P5;5 � � � � � � � � �P5;6 � � � � � � � � �P5;7 � � � � � � � � �P5;8 � � � � � � � � � �P5;9 � � � � � � � � � �P5;10 � � � � � � � � � �P5;11 � � � � � � � � �P5;12 � � � � � � � � �Table B.1: Polyominoes and the double pavings that defeat them.

72



73
P1;1 P2;1 P3;1 P3;2 P4;1 P4;2 P4;3 P4;4 P4;5Figure B.1: All ongruene lasses of polyominoes up to size 4, ordered by size andthen by lexiographi order.

P5;1 P5;2 P5;3 P5;4 P5;5 P5;6
P5;7 P5;8 P5;9 P5;10 P5;11 P5;12Figure B.2: Congruene lasses of polyominoes of size 5, ordered by lexiographiorder.



74

P6;1 P6;2 P6;3 P6;4 P6;5 P6;6 P6;7
P6;8 P6;9 P6;10 P6;11 P6;12 P6;13 P6;14
P6;15 P6;16 P6;17 P6;18 P6;19 P6;20 P6;21
P6;22 P6;23 P6;24 P6;25 P6;26 P6;27 P6;28
P6;29 P6;30 P6;31 P6;32 P6;33 P6;34 P6;35Figure B.3: Congruene lasses of polyominoes of size 6, ordered by lexiographiorder.
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P3;1 P4;1 P4;2 P4;3P3;2 P4;2 P4;3 P4;4 P4;5P4;1 P5;1 P5;2 P5;3P4;2 P5;2 P5;3 P5;4 P5;5 P5;6 P5;7 P5;8 P5;9 P5;11P4;3 P5;3 P5;4 P5;7 P5;9 P5;12P4;4 P5;4P4;5 P5;4 P5;8 P5;9 P5;10Table B.2: Polyomino anestry for next immediately sized polyominoes.


