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ABSTRACT

EXPLORATION OF THE TYPE C̃ TEMPERLEY–LIEB ALGEBRA

Kevin Salmon

Given the Hecke algebra corresponding to an arbitrary Coxeter system of

type Γ, there is a basis of particular interest, called the canonical basis, that

has some remarkable properties but is computationally difficult to work with.

The change of basis matrix between the defining basis of the Hecke algebra and

the canonical basis is determined by a set of polynomials, called the Kazhdan–

Lusztig polynomials. One crux to computing these polynomials is determining

the so-called µ-values, which are the coefficients of the highest possible degree

terms of the polynomials. In this thesis, we study a quotient of the Hecke algebra

of type affine C, a type of generalized Temperley–Lieb algebra, which provides

a combinatorially tractable model for Kazhdan–Lusztig theory. In particular,

we obtained several original results concerning the computation of µ-values and

products of canonical basis elements involving fully commutative elements of

Coxeter groups of type affine C. Moreover, we construct a diagram algebra that

mirrors these results and which we believe is a faithful representation of the

corresponding Temperley–Lieb algebra.
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Chapter 1

Preliminaries

1.1 Introduction

The (type A) Temperley–Lieb algebra TL(A), invented by Temperley and Lieb in 1971, is a
finite dimensional associative algebra that arose in statistical mechanics [26]. Kauffman and
Penrose showed that this algebra can be realized as a particular diagram algebra, which is a
type of associative algebra with a basis determined by certain diagrams, where multiplication
is given by applying local combinatorial rules to the diagrams [17, 21]. In 1987, V. Jones
showed that TL(A) occurs naturally as a quotient of the type A Hecke algebra, H(A), whose
underlying group is the symmetric group [16]. Jones introduced a Markov trace on H(A)

that is degenerate (the trace is the matrix trace of a transfer matrix algebra), but its radical
is an ideal of H(A), and so we obtain a generically nondegenerate trace on the quotient
algebra. This quotient algebra is isomorphic to TL(A).

Eventually, this realization of the Temperley–Lieb algebra as a Hecke algebra quotient
was generalized by Graham to the case of an arbitrary Coxeter graph Γ, which we denote
by TL(Γ) [6]. Each TL(Γ) has several bases indexed by the so-called fully commutative
elements (in the sense of Stembridge [25]). The algebra TL(Γ) provides a combinatorially
tractable model for Kazhdan–Lusztig theory.

In a series of papers, Green constructed faithful diagrammatic representations of TL(Γ),
where Γ is of type B,D, or H [7]. Martin and Saleur introduced a diagram calculus for
the generalized Temperley–Lieb of type affine A [20], but faithfulness was later proved by
Green and Fan [4]. T. tom Dieck described a diagrammatic representation of the generalized
Temperley–Lieb algebra of type E [27], which was proved to be faithful in a recent paper
by Green [10]. Ernst [3] constructed an associative diagram algebra and proved that it
is a faithful representation of TL(C̃). Since Coxeter groups of type C̃ have an infinite
number of fully commutative elements, TL(C̃) is infinite dimensional. This is the first
faithful representation of an infinite dimensional non-simply-laced generalized Temperley–
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Lieb algebra (in the sense of Graham [6]).
For W a Coxeter group of type Γ, the Hecke algebra H(Γ) is an algebra with a basis

given by {Tw ∣ w ∈W} and relations that deform the relations of W by a parameter q. If we
set q to 1, we recover the group algebra of W . In their 1979 paper, Kazhdan and Lusztig [18]
defined a remarkable basis {C ′

w ∣ w ∈W} for H(Γ) in terms of the natural basis.
The entries in the change of basis matrix between the T -basis and the C ′-basis give rise

to the Kazhdan–Lusztig polynomials {Px,w ∣ x,w ∈ W}. If x < w (in the Bruhat order),
then Px,w is a polynomial in q of degree at most (`(w) − `(x) − 1)/2. We let µ(x,w) denote
the (integer) coefficient of q(`(w)−`(x)−1)/2 in Px,w. Note that µ(x,w) can only be nonzero if
x < w and `(w) − `(x) is odd. The µ-values also appear in multiplication formulas for the
Kazhdan–Lusztig basis elements {C ′

w}.
The Kazhdan–Lusztig polynomials are of great importance in algebra and geometry.

They have applications to the representation theory of semisimple algebraic groups, Verma
modules, algebraic geometry, topology of Schubert varieties, canonical bases, immanant
inequalities, etc. Unfortunately, computing the polynomials Px,w efficiently is quite difficult,
even in finite groups of moderate size. The only obvious way to compute Px,w is by means
of a recurrence formula:

Px,w = q1−cPsx,v + q
cPx,v − ∑

sz<z
µ(z, v)q

−1/2
z q

1/2
w Px,z,

where we define c = 0 if x < sx and c = 1 otherwise. Note that the µ-values play a major role
in the recursive structure of the Kazhdan–Lusztig polynomials. Computing each µ-value is
not known to be any easier than computing the entire polynomial Px,w. However, one can
see from the recurrence above that the computation of Px,w would be simplified if one could
quickly compute the µ-values.

In 1999, Green and Losonczy [12] showed that TL(Γ) admits a canonical basis, that is,
{cw ∣ w fully commutative}. This basis is analogous to the Kazhdan–Lusztig basis, or C ′-
basis, for H(Γ) [12]. In addition, under some circumstances, cw is the image of the Kazhdan–
Lusztig basis element C ′

w in the quotient when w is fully commutative. In particular, this is
true for TL(C̃n).

Using the corresponding diagram algebra of TL(Γ) when Γ is of types A,B,D, or E,
Green constructed a trace on H(Γ) similar to the Jones trace in the case that Γ is of
type A [4]. This trace satisfies the Markov condition, which arises in the context of knot
theory. The coefficient µ(x,w) appears as the coefficient of q−1/2 in the trace of C ′

xC
′
w.

Remarkably, this trace is easy to compute in the known examples if x and w are both fully
commutative, even though the problem of computing the product C ′

xC
′
w is difficult in general.

Unfortunately, the diagrammatic representation of TL(C̃n) established by Ernst is described
in terms of the so-called monomial basis, which does not coincide with the canonical basis.

2



In this thesis, we obtained several original results concerning the computation of µ-values
and products of canonical basis elements involving fully commutative elements of Coxeter
groups of type C̃. Moreover, we constructed a diagram algebra that mirrors these results,
which we believe is a faithful representation of the canonical basis corresponding to TL(C̃).
Ultimately, we intend to use the results of this thesis to relate the two diagram algebras
in order to construct a trace on H(C̃) and then use this trace to non-recursively compute
µ(x,w) for x and w both fully commutative.

We begin by introducing Coxeter systems and their necessary properties in Chapter 1.
These properties are further developed for Coxeter systems of certain types in Chapter 2,
where we also introduce visualizations of group elements of Coxeter groups (called heaps)
in order to clarify many of the arguments presented in subsequent chapters. We introduce
the Hecke algebra corresponding to a Coxeter system of arbitrary type in Section 3.1, and
subsequently develop the Temperley–Lieb algebra in Section 3.2. In Chapter 4, we pro-
vide computations of several products of interest that are conjectured to correspond to the
diagram algebra encountered in Chapter 5.

1.2 Coxeter systems

A Coxeter system is a pair (W,S) where S is a finite set of involutions generating a group
W , called a Coxeter group, with presentation

W = ⟨S ∣ (st)m(s,t) = e⟩,

where e is the identity element in W , m(s, t) = m(t, s) < ∞, and m(s, t) = 1 if and only if
s = t. By [15], m(s, t) is exactly the order of the group element st ∈W . We call m(s, t) the
bond strength of s and t. It turns out that the elements of S are distinct as group elements.
Coxeter groups may be thought of as generalized reflection groups, where each s ∈ S is a
reflection and st is a rotation, where s, t ∈ S with s ≠ t and m(s, t) is the order of the rotation.

Given a Coxeter system (W,S), a word sx1sx2⋯sxr spelled in the alphabet S is called an
expression for w ∈W if it is equal to w when considered as a group element. If r is minimal
among all expressions for w, the corresponding word is called a reduced expression for w, in
which case, the length of w is defined to be `(w) ∶= r. Any w ∈W may have many reduced
expressions representing the element. In the event we opt for a fixed expression for w ∈W ,
possibly reduced, we write w = sx1⋯sxr (written in sans serif font). For u, v ∈W , we say uv
is a reduced product if `(uv) = `(u) + `(v).

For a given Coxeter system (W,S), we have an associated Coxeter graph Γ having

(a) vertex set S and

(b) edges {si, sj} for each m(si, sj) ≥ 3.
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Each edge {si, sj} shall be labeled with the corresponding bond strength, although it is
standard to omit the label when m(si, sj) = 3. When provided a Coxeter graph Γ, by [15,
§2.2], we may uniquely reconstruct the associated Coxeter system (W,S), in which case, the
associated Coxeter system is said to be of type Γ and we let W (Γ) and S(Γ) denote the
corresponding Coxeter group and generating set, respectively.

⋯
s1 s2 s3 sn−1 sn

(a) An

4
⋯

s1 s2 s3 sn−1 sn

(b) Bn

4
⋯

4

s1 s2 s3 sn−1 sn sn+1

(c) C̃n

Figure 1.1: Coxeter graphs of type An, Bn, and C̃n.

Suppose (W,S) is of type An, whose graph is provided in Figure 1.1(a). It is known that
W (An) ≅ Symn+1, the symmetric group on n+1 objects, under the map si z→ (i, i+1). This
thesis will focus primarily on Coxeter systems of types Bn and C̃n, which are provided in
Figures 1.1(b) and 1.1(c), respectively. The group W (Bn) is isomorphic to the group Sn ≀Z2,
which is of order n!2n. Interestingly, the group W (C̃n) has infinite order. One should notice
that the Coxeter graph of type C̃n has two subgraphs isomorphic to the graph of type Bn.
Note that W (C̃n) has defining relations

(a) sisi = e for all i;

(b) sisj = sjsi for ∣i − j∣ > 1;

(c) sisjsi = sjsisj for ∣i − j∣ = 1 and 1 < i, j < n + 1;

(d) sisjsisj = sjsisjsi for {i, j} = {1,2} or {n,n + 1}.

Note that we can obtain W (Bn) from W (C̃n) by removing the generator sn+1 and the cor-
responding relations [15]. Similarly, we may obtain a Coxeter group of type Bn by removing
the generator s1 and the corresponding relations. To distinguish the two cases, we let W (Bn)

4



denote the subgroup of W (C̃n) generated by {s1, . . . , sn} and let the subgroup of W (C̃n)
generated by {s2, . . . , sn+1} be denoted W (B′

n). Clearly W (B′
n) ≅W (Bn).

Since elements of S(Γ) have order two, the relation (st)m(s,t) = e can be written

sts⋯
±
m(s,t)

= tst⋯
±
m(s,t)

having m(s, t) ≥ 2 factors. If m(s, t) = 2, then st = ts is called a commutation relation as s
and t are commuting elements. If m(s, t) ≥ 3, the relation above is called a braid relation.
The act of replacing

sts⋯
±
m(s,t)

z→ tst⋯
±
m(s,t)

is called a commutation move if m(s, t) = 2 and a braid move if m(s, t) ≥ 3.
Each element w ∈ W (Γ) can have several reduced expressions that represent it. The

following theorem, which is known as Matsumoto’s Theorem, addresses the relationship
between the reduced expressions for a group element.

Theorem 1.2.1. [5] In a Coxeter system (W,S) of type Γ, any two reduced expressions for
the same group element in W (Γ) differ by a sequence of commutation and braid moves.

As a result of Matsumoto’s Theorem, we find that all reduced expressions for w ∈W (Γ)

have the same generators appearing in every reduced expression, possibly with different
multiplicities. We define the support of an element w ∈ W (Γ), denoted supp(w), to be the
set of all generators appearing in any reduced expression for w. If supp(w) = S(Γ), we say
w has full support.

Let (W,S) be of type Γ and let w ∈W (Γ). We define the left descent of w via

L(w) ∶= {s ∈ S ∣ `(sw) < `(w)},

and the right descent set of w via

R(w) ∶= {s ∈ S ∣ `(ws) < `(w)}.

It turns out that s ∈ L(w) (respectively, R(w)) if and only if w has a reduced expression
beginning (respectively, ending) with s [15].

Given a reduced expression w for w ∈W (Γ), we define any expression obtained by deleting
some subsequence of generators appearing in w as a subexpression for w. Any consecutive
subexpression of w shall be deemed a subword. If there exists some z ∈W (Γ) such that z is
represented by a subexpression of w, where w is a reduced expression for w, we write z ≤ w.
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This relation is a well-defined partial ordering on W (Γ) and is called the Bruhat order [15,
§ 5.9].

In the remainder of this thesis, when confusion is not likely to arise, we abbreviate the
expression sx1sx2⋯sxr as x1x2⋯xr.

Example 1.2.2. The Hasse diagram for the Bruhat order on W (A2) is given in Figure 1.2.
This example provides a visualization of the elements of W (A2) and their respective sub-
words.

●

121

●12 ● 21

●2 ● 1

●

e

Figure 1.2: Hasse diagram for the Bruhat order of W (A2).

1.3 Fully commutative elements

Let (W,S) be a Coxeter system of type Γ and let w ∈W (Γ). As in [25], define the relation ∼

on the set of reduced expressions for w as follows. Let w and w′ be two reduced expressions
for w. We define w ∼ w′ if there is a single commutation relation that carries w to w′ via
some commutation ij z→ ji where m(i, j) = 2.

Now, define ≈ to be the reflexive transitive closure of the relation ∼. The relation ≈

is an equivalence relation on the set of reduced expressions for w. Each equivalence class
under ≈ is called a commutation class. If the set of reduced expressions for w has a single
commutation class, we say w is fully commutative. Define FC(Γ) to be the set of all fully
commutative elements of W (Γ).

Example 1.3.1.

(a) Consider w ∈ W (C̃3) with fixed expression w = 323121231. Then using braid moves

6



and commutations we see that

(323)(1212)31 = (232)(2121)31

= 23121(31)

= 23121(13)

= 2(31)23

= 21(323)

= 21(232).

It turns out that 23123, 21323, and 21232 are all reduced expressions for w and they
are the only reduced expressions for w. Then, because 23123 and 21323 are related
through commutation, and 21232 is not related to either of the other two through
any commutation, the commutation classes of w are {23123,21323} and {21232}. So
w /∈ FC(C̃3). Moreover, supp(w) = {1,2,3}, which is not equal to S, so w does not
have full support. Furthermore, L(w) = {2} and R(w) = {2,3}.

(b) Now consider w ∈ W (B3) with fixed reduced expression w = 323121231. Since the
relations on B3 are the relations on C̃3 after removing the generator 4 and its corre-
sponding relations, we have the same support, commutation classes, and descent sets
as in Part (a). The only difference is that w now has full support.

(c) Consider w ∈W (C̃3) such that w = 132413 is a reduced expression for w. The unique
commutation class of w is

{132413,134213,134231,132431,312413,314213,312431,314231}.

Notice that we cannot perform any braid moves on any reduced expression for w. Thus
w ∈ FC(C̃3). Also, supp(w) = {1,2,3,4}, so w has full support while L(w) = {1,3} =

R(w). Furthermore, (1324)w is a reduced product representing a fully commutative
element in C̃3, as well. If we pursue this pattern for any arbitrary length, we find
that each (1324)kw for k > 0, is a reduced product, and that the corresponding group
element is fully commutative. Thus, FC(C̃3) has infinitely many elements. We will
frequently encounter this type of element in C̃n, for arbitrary n, throughout this thesis.

The following theorem, proven by Stembridge, presents criteria sufficient to determine
whether or not an element is fully commutative.

Theorem 1.3.2. [25] Let (W,S) be a Coxeter system of type Γ. An element w ∈ W (Γ) is
fully commutative if and only if no reduced expression for w contains a subword of the form
sts⋯
±
m(s,t)

for m(s, t) ≥ 3.

7



Loosely speaking, an element is fully commutative if and only if no reduced expression
provides an opportunity to perform a braid move.

Remark 1.3.3. As a result of Theorem 1.3.2, FC(C̃n) consists strictly of elements whose
reduced expressions avoid the following two types of consecutive subwords;

(a) iji for ∣i − j∣ > 1 and 1 < i, j < n + 1, and

(b) ijij for {i, j} = {1,2} or {n,n + 1}.

Note that all elements of FC(Bn) and FC(B′
n) avoid the relevant consecutive subwords, as

well.

Of course, if W (Γ) is a finite group, FC(Γ) must be finite as well, such as in type
Bn. However, both W (C̃n) and FC(C̃n) are infinite. Interestingly, there do exist examples
of infinite Coxeter systems that have finitely many fully commutative elements, such as
Coxeter systems of type En for n ≥ 9, as seen in [25].

8



Chapter 2

Combinatorics of Coxeter groups of
types B and C̃

2.1 Heaps

Associated with every reduced expression in a Coxeter group is a labeled partially ordered
set, called a heap. Heaps render a visual representation for any reduced expression while pre-
serving the relations among generators. Our development of heaps follows from [1] and [25]
with our focus primarily on Coxeter groups of types Bn and C̃n.

Let (W,S) be a Coxeter system of type Γ and let w = sx1⋯sxr be a reduced expression
for w ∈W (Γ). We define a partial ordering on the indices {1, . . . , r} by the transitive closure
of the relation j ⋖ i if i < j and m(sxi , sxj) > 2. Moreover, since w is reduced, j ⋖ i if i < j
and sxi = sxj by transitivity. This partial order is called the heap of w, where i is labeled as
sxi .

Following from [25, Proposition 2.2], we find that heaps are well-defined up to commuta-
tion class. In particular, there is a one-to-one correspondence between commutation classes
and heap representations for any w ∈ W (Γ). This means that if w and w′ are two reduced
expressions for w ∈W (Γ) that are in the same commutation class, then the heaps of w and
w′ are equal. If w ∈ FC(Γ), then there is a unique heap corresponding to w since a fully
commutative element has a single commutation class.

Example 2.1.1. If we let w = s3s2s1s2s5s4s6s5 be a reduced expression for w ∈ W (C̃5),
we find that w has indexing set {1,2,3,4,5,6,7,8}. As an example, 3 ⋖ 2 since 2 < 3 and
the generators s2 and s1 (which are the second and third generators present in w) do not
commute. The visualization of w is provided in the Hasse diagram for the heap poset found
in Figure 2.1. Note that w ∈ FC(C̃n).

Let w be a fixed reduced expression for w ∈W (C̃n). As encountered in [1], a heap for w

9



●

s2

●

s1

●

s3

●

s2

●

s4

●

s5

●

s5

●

s6

Figure 2.1: Labeled Hasse diagram for the heap of a fully commutative element.

may be represented as a collection of lattice points embedded in {1,2, . . . , n+1}×N. In order
to accomplish this, the (not unique) coordinates (x, y) ∈ {1,2, . . . , n + 1} ×N are assigned to
each entry of the labeled Hasse diagram representing the heap of w as follows:

(a) The entry with coordinates (x, y) will be labeled si in the heap if and only if x = i;

(b) The entry with coordinates (x, y) is greater than the entry with coordinates (x′, y′) in
the heap if and only if y > y′.

In the case of type C̃n (and any other Coxeter system with straight line Coxeter graph),
we find the defining relations imply (x, y) covers (x′, y′) in the heap if and only if x = x′ ± 1,
y > y′, and no entries (x′′, y′′) exist such that x′′ ∈ {x,x′} and y′ < y′′ < y. Subsequently,
we may completely reconstruct the edges of the Hasse diagram and the corresponding heap
poset from a lattice point representation. The lattice point representation of a heap enables
us to visualize and simplify arguments that have potential to become unwieldy. Note that
entries on top of a heap correspond to generators occurring to the left in the associated
reduced expression(s).

Let w be a reduced expression for w ∈W (C̃n), and let H(w) denote the lattice represen-
tation of the heap poset in {1,2, . . . , n+ 1}×N. If w ∈ FC(C̃n), then the heap corresponding
to every reduced expression for w is identical, that is, the choice of reduced expression for w
is irrelevant. In this case, we will often write H(w) and we will refer to H(w) as the heap
of w. Furthermore, if w ∈ FC(C̃n) and the entry i occurs on the top (respectively, bottom)
of H(w), then si ∈ L(w) (respectively, si ∈R(w)).

Given a heap, every generator with coordinates (x, y) will have fixed x-coordinate, but
may have multiple y-coordinates, meaning two entries labeled by the same generator must
possess the same x-coordinate but may differ by the amount of vertical space separating
them.

Let w = sx1⋯sxr be a reduced expression for w ∈ FC(C̃n). If sxi and sxj are adjacent
generators in the associated Coxeter graph with i < j, then we place the point labeled by
sxi at a level that is above the level of the point labeled by sxj . Because generators that are

10



not adjacent to one another commute, points whose x-coordinates differ by more than one
are allowed to vertically slide past each other or land at the same level. In order to place
emphasis on the covering relations occurring in the lattice representation, we will encase
each entry of the heap in a rectangle (with rounded corners) in a such a manner that if one
entry covers another, the rectangles overlap halfway.

Example 2.1.2. Recall Example 2.1.1, where w = 32125465 is a reduced expression for
w ∈ W (C̃5). Since w ∈ FC(C̃n), we may consider H(w). Then two equivalent lattice point
representations for H(w) appear in Figure 2.2.

2

1 5

2 4 6

3 5

(a)

2 5

1 4 6

52

3

(b)

Figure 2.2: Two equivalent lattice point representations for the heap of a fully commutative
element.

Example 2.1.3. Let w be as in Example 1.3.1(a), where the expressions w1 = 23123, w2 =

21323, and w3 = 21232 are the reduced expressions representing w ∈ W (C̃3). Recall that w
has commutation classes {w1,w2} and {w3}. Visualizations of H(w1), H(w2), and H(w3)

are presented in Figure 2.3.

3

2

31

2

(a) H(w1) and H(w2)

2

3

2

1

2

(b) H(w3)

Figure 2.3: Two heaps for a single non-fully commutative element.

There may be many different ways to represent a heap, each differing by some combination
of vertical placement of blocks. For example, we may choose to place blocks as high as
possible, as low as possible, or anywhere in between. In this thesis, we will choose the
representation we find to be the most efficient and enlightening in each example.
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Let w = x1⋯xr be a fixed reduced expression for w ∈ W (C̃n) and let w′ = y1⋯yk be
a reduced subexpression (not necessarily a subword) of w. A heap H ′ is defined to be a
subheap of H(w) if H ′ =H(w′).

A subposet Q of a poset P is called convex if y ∈ Q whenever x < y < z in P and x, z ∈ Q.
We refer to a subheap as a convex subheap if the corresponding subposet is convex.

Example 2.1.4. As in Example 2.1.1, let w = 32125465 be a reduced expression for w ∈

W (C̃5). Consider the subexpression w′ = 5465 resulting from the deletion of the first through
fourth generators in w and the subexpression w′′ = 545 resulting in the deletion of all but
the fifth, sixth, and eighth generators in w. We may represent H(w′) in Figure 2.4(a) and
H(w′′) in Figure 2.4(b). Then H(w′′) is not a convex subheap as 5 < 6 < 5, yet 6 is not
present in H(w′′). However, the inclusion of the generator 6 does render a convex subheap.

5

4 6

5

(a) H(w′)

5

4

5

(b) H(w′′)

Figure 2.4: Subheaps of the heap given in Figure 2.2.

The following is implicit using the above definitions. In particular, one may refer to [25,
§3.3].

Proposition 2.1.5. Let w ∈ FC(Γ). Then H ′ is a convex subheap of H(w) if and only if
H ′ is the heap for some subword for some reduced expression for w.

The following result is a consequence of Theorem 1.3.2 and Remark 1.3.3 and enables us
to quickly recognize when a heap corresponds to an element of FC(C̃n).

Proposition 2.1.6. Let w ∈ FC(C̃n). Then H(w) never shall contain any of the convex
subheaps found in Figure 2.5, where 1 < k < n + 1 and we use the blank rectangle to
explicitly state the absence of any element occupying the corresponding position.

2.2 Star operations

In this section, we introduce the notion of non-cancellable elements in arbitrary Coxeter
systems, which shall be refined for type Bn and type C̃n. Let (W,S) be a Coxeter system of
arbitrary type Γ and let I = {s, t} be a pair of non-commuting generators. Then there are
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1

2

1

2

(a)

2

1

2

1

(b)

n + 1

n

n + 1

n

(c)

n + 1

n

n + 1

n

(d)

k + 1

k

k + 1

(e)

k − 1

k

k − 1

(f)

Figure 2.5: Impermissible convex subheaps for elements in FC(C̃n).

four partially defined maps from W to itself induced by I, known as star operations. When
the operation is defined, it will respect the partition W = FC(Γ)∪̇(W /FC(Γ)) and affects
the length of w by increasing or decreasing `(w) by 1.

Let w ∈W (Γ). We say w is left star reducible by s with respect to t to sw if

(a) s ∈ L(w) and

(b) t ∈ L(sw) with m(s, t) ≥ 3.

We define right star reducible by s with respect to t analogously. Note that if m(s, t) ≥ 3,
then w is left (respectively, right) star reducible by s with respect to t if and only if w = stz
(respectively, w = zts), for z ∈ W (Γ), where the product is reduced, meaning no reduced
expression for z may start (respectively, end) with s. We will say w is star reducible if w is
either left or right star reducible by some s ∈ S(Γ). We say w is left star expandable by t
with respect to s to tw if

(a) s ∈ L(w) and

(b) `(tw) > `(w) with m(s, t) ≥ 3.

We define right star expandable by t with respect to s analogously.
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Suppose I = {s, t} is a non-commuting pair. A left star reduction will be denoted st (w),
and a left star expansion will be denoted st (w). The respective right-handed notation is
st (w) and st (w). We denote left star operations that are either an expansion or reduction as
st (w). Similarly, we denote right star operations that are either an expansion or reduction
as st (w). Note the appearance of st in the notation; the comma is omitted for cleanliness
in the notation, and should not cause any confusion throughout subsequent chapters. When
convenient, we may replace st with ts or simply I in the notation for each operation, where
st, ts, and I all represent the unordered set {s, t}. If the reduction or expansion does not
exist with respect to I, the respective symbol is undefined.

A similar concept is that of weak star reductions. Let w ∈ FC(Γ). Then w is left weak
star reducible by s with respect to t to sw if the following are satisfied:

(a) s ∈ L(w);

(b) t ∈ L(sw) with m(s, t) ≥ 3;

(c) tw /∈ FC(Γ).

One should first note that we are restricting to the case where w is fully commutative. Then
notice that `(sw) = `(w) − 1 by Condition (b) and `(tw) = `(w) + 1 by Condition (c). We
define w to be right weak star reducible by s with respect to t to ws analogously. When
w is left (respectively, right) weak star reducible by s with respect to t, we refer to the
mapping w z→ sw (respectively, w z→ ws) as a left (respectively, right) weak star reduction.
As before, if w is weak star reducible on either the left or right, we say w is weak star
reducible. Otherwise, meaning w is not weak star reducible, then w ∈ FC(Γ) is said to be
non-cancellable.

Example 2.2.1. Let w,w′ ∈ FC(C̃2) where w = 121 is a reduced expression for w and
w′ = 12 is a reduced expression for w′. Note that 1 ∈ L(w), 2 ∈ L(1w), and m(s1, s2) = 4,
but 2121 = 2w /∈ FC(C̃2). Thus w is left weak star reducible by 1 with respect to 2 to 21,
meaning w is not non-cancellable. However, notice that w′ is left star reducible by 1 with
respect to 2 to the group element 1(12) = 2. Since 212 = 2w′ ∈ FC(C̃2), we find w′ in not
left weak star reducible. Similarly, we find w′ is right star reducible but not right weak star
reducible. Therefore w′ is non-cancellable.

Here are a few observations regarding weak star operations:

(a) If w ∈ FC(Γ) and s ∈ L(w) (respectively, R(w)), then sw ∈ FC(Γ). Consequently, if
some fully commutative w is weak star reducible to v, then v ∈ FC(Γ), as well.

(b) By definition, if w is weak star reducible to v, then w is also star reducible to v. But
the converse is not always true, as seen in Example 2.2.1.
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(c) If w ∈ FC(C̃n), FC(Bn), or FC(B′
n), then w is weak star reducible by s with respect

to t if and only if

w =

⎧⎪⎪
⎨
⎪⎪⎩

stsz, for m(s, t) = 4

stz, for m(s, t) = 3,

where stsz and stz are reduced as products.

2.3 Type I and type II elements

Following [1], we define a family of elements, called type I elements, whose corresponding
heap representations are likened to zigzagging shapes. They are defined as follows.

(a) If i < j, let
zi,j = i(i + 1)⋯(j − 1)j

and
zj,i = j(j − 1)⋯(i − 1)i.

We also let zi.i = i.

(b) If 1 < i ≤ n + 1 and 1 < j ≤ n + 1, let

zL,2ki,j = zi,2(z1,nzn+1,2)
k−1z1,nzn+1,j.

(c) If 1 < i ≤ n + 1 and 1 ≤ j < n + 1, let

zL,2k+1
i,j = zi,2(z1,nzn+1,2)

kz1,j.

(d) If 1 ≤ i < n + 1 and 1 ≤ j < n + 1, let

zR,2ki,j = zi,n(zn+1,2z1,n)
k−1zn+1,2z1,j.

(e) If 1 ≤ i < n + 1 and 1 < j ≤ n + 1, let

zR,2k+1
i,j = zi,n(zn+1,2z1,n)

kzn+1,j.

If w is equal to one of the above, we say w is of type I.
The notation may appear cumbersome, so let’s make a few comments. The indices i

and j determine the point at which we start and stop, respectively. The L or R superscript
indicate the zigzag begins moving toward the left or right, respectively (when drawing the
corresponding heap from top to bottom). Lastly, the 2k + 1 or 2k indicate the number of
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times we encounter either of the end generators, with the end generators being s1 and sn+1.
If si is an end generator, it is not counted, but if sj is an end generator, it is counted. In
other words, if we start our zigzagging on an end generator, it is not counted, but if we
finish our zigzag on an end generator, it is counted. Note that each type I element is fully
commutative, so H(w) is well-defined if w is of type I.

Example 2.3.1. Consider the type I element w = zR,2ki,j in FC(C̃n), where 1 < i, j ≤ n + 1.
The heap representation for w is provided in Figure 2.6.

j

j − 1

⋱
2

1

2

. .
.

⋮
. .
.
n

n + 1

n

⋱
i + 1

i

Figure 2.6: Heap of a type I element.

Now define

Xk,k+2m = k(k + 2)(k + 4)⋯(k + 2m − 2)(k + 2m) ∈W (C̃n)

for m ∈ N. For example, if n is even we have

X1,n+1 = 13⋯(n − 1)(n + 1)

and
X2,n = 24⋯(n − 2)n,

where all even indices appear exactly once in X2,n and all odd indices appear exactly once
in X1,n+1. If w ∈W (C̃n) is equal to an alternating product of X1,n+1 and X2,n, for n even, or
an alternating product of X1,n and X2,n+1, for n odd, we say w is of type II.
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Example 2.3.2. Let w ∈ W (C̃n) with n even, such that w has a fixed expression w =

X2,n(X1,n+1X2,n)
k. One should notice that each of these elements is reduced. Then H(w) is

the heap found in Figure 2.7(a). When encountering type II elements, we will primarily be
focusing on elements of the form found in Figure 2.7(b) where the element is ‘book-ended’
by all of the odd generators. Also note that each type II element is fully commutative as
they avoid the relations seen in Figure 2.5.

2 ⋯ n

1 3 ⋯ n + 1

⋮

2 ⋯ n

1 3 ⋯ n + 1

2 ⋯ n

(a)

1 3 ⋯ n + 1

2 ⋯ n

⋮

1 3 ⋯ n + 1

2 ⋯ n

1 3 ⋯ n + 1

(b)

1 3 ⋯ n + 1

2 ⋯ n

⋮

2 ⋯ n

1 3 ⋯ n + 1

2 ⋯ n

(c)

Figure 2.7: Heaps of type II elements for n even.

2.4 Classification of non-cancellable elements in types Bn and C̃n

The following theorem classifies all non-cancellable elements in Coxeter systems of type Bn.

Theorem 2.4.1. [1] Let (W,S) be a Coxeter system of type Bn and let w ∈ FC(Bn). Then
w is non-cancellable if and only if w is equal to one of the following:

(a) a product of commuting generators,

(b) 12u,

(c) 21u,
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where u is a product of commuting generators and 1,2,3 /∈ supp(u). There is an analogous
statement for FC(B′

n), where 1 and 2 are replaced with n + 1 and n, respectively.

The next theorem classifies all non-cancellable elements in Coxeter systems of type C̃n.

Theorem 2.4.2. [1] Let w ∈ FC(C̃n). Then w is non-cancellable if and only if w is equal to
one of the following elements:

(a) uv, where u is a type B non-cancellable element and v is a type B′ non-cancellable
element with supp(u) ∩ supp(v) = ∅;

(b) zR,2k1,1 , zL,2kn+1,n+1, z
L,2k+1
n+1,1 , z

R,2k+1
1,n+1 ;

(c) any type II element.

In Theorem 2.4.2, Part (a) includes all possible products of commuting generators, and
Part (b) includes all type I elements which have left and right descent sets equal to one of
the end generators.

The non-cancellable elements play an important role in the development of a diagram
algebras used to simplify concepts appearing in the quotient of the Hecke algebra presented
in Chapter 3.
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Chapter 3

Hecke algebras and Temperley–Lieb
algebras

3.1 Hecke algebras

Let (W,S) be the Coxeter system of type Γ. We define the Hecke algebra Hq(Γ) correspond-
ing to W (Γ) to be the Z[q, q−1]-algebra with abstract basis {Tw ∣ w ∈W (Γ)} satisfying

TsTw ∶=

⎧⎪⎪
⎨
⎪⎪⎩

Tsw if ` (sw) > ` (w) ,

qTsw + (q − 1)Tw if ` (sw) < ` (w)

for any s ∈ S(Γ) and w ∈W (Γ). This enables us to compute TzTw for any z,w ∈W (Γ). Each
Ts is invertible with

T −1
s = q−1Ts − (1 − q−1)Te,

meaning each Tw is recursively invertible, although the computation of each inverse becomes
progressively more complicated as `(w) increases [15]. Note that if w = sx1sx2⋯sxk is a
reduced expression for w ∈ W (Γ), then Tw = Tsx1sx2⋯sxk = Tsx1Tsx2⋯Tsxk . As before, in an
effort to ease notation, we abbreviate Tsx1sx2⋯sxk as Tx1x2⋯xk , and in particular, Tsi = Ti
for si ∈ S(Γ). Note that if we set q = 1, we recover the group algebra Z[W (Γ)]. It is often
convenient to extend the scalars of Hq(Γ) to produce an A-algebra H(Γ), where A = Z[v, v−1]

and v2 = q [15, §7.9]. In particular, H(Γ) = A ⊗Z[q,q−1] Hq(Γ). We find the polynomial
v + v−1 ∈ A occurs frequently enough that we opt to denote it as δ.

Since W (C̃n) is an infinite group, H(C̃n) must be of infinite rank. Similarly, H(Bn) and
H(B′

n) have finite rank since both W (Bn) and W (B′
n) are finite groups.

Example 3.1.1. Consider w1 = 323 and w2 = 12123 where both w1 and w2 are reduced
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expressions for w1,w2 ∈W (C̃3), respectively. We will calculate Tw1Tw2 . First notice

(323)(12123) = (232)(2121)3

= 231213

where 231213 is reduced. In order to compute Tw1Tw2 , observe that 312123 and 2312123
are reduced expressions while (323)(1212)3 = (232)(2121)3 is not since (323)(1212)3 =

(232)(2121)3 = 231213. Then we see that

Tw1Tw2 = T323T12123

= T3T2T3T12123

= T3T2T312123

= T3T2312123

= T231213 + (q − 1)T2312123.

While {Tw ∣ w ∈W (Γ)} is the natural basis for H(Γ), Kazhdan and Lusztig, in [18], de-
fined the so-called canonical basis {C ′

w ∣ w ∈W (Γ)} for H(Γ) as follows. Let ι ∶ Z[v, v−1]z→

Z[v, v−1] be the Z-linear ring homomorphism that exchanges v and v−1 and extend ι to be
the ring automorphism of H(Γ) satisfying

ι
⎛

⎝
∑

w∈W (Γ)
awv

−`(w)Tw
⎞

⎠
= ∑
w∈W (Γ)

ι (aw) (v
−`(w)Tw−1)

−1
,

where the aw are elements of Z[v, v−1]. In [18], Kazhdan and Lusztig proved the following
theorem.

Theorem 3.1.2. There is a unique element C ′
w ∈ H(Γ) such that ι(C ′

w) = C
′
w and

C ′
w = ∑

z≤w
Pz,wv

−`(w)Tz,

where ≤ is the Bruhat ordering on the Coxeter group W (Γ), Pz,w ∈ Z [v] if z ≤ w, and
Pw,w = 1. The set {C ′

w ∣ w ∈ W (Γ)} forms a Z[v, v−1]-basis for H(Γ) and is called the
C ′-basis.

The polynomials, Pz,w, appearing in the previous theorem are called the Kazhdan–Lusztig
polynomials and determine the change of basis matrix between the T -basis and the C ′-basis.
This remarkable family of polynomials appears in Lusztig’s conjecture about the characters
of irreducible modules of reductive algebraic groups in characteristic p > 0 and is intimately
related to the geometry of Schubert varieties, making this family of key importance in algebra
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and geometry. The introductory facts regarding the Kazhdan–Lusztig polynomials include
Pw,w = 1 and Pz,w = 0 unless z ≤ w. If we have z ≤ w, then Pz,w is a polynomial (in Z[v]) of
degree at most `(w) − `(z) − 1. We define µ(z,w) to be the integer coefficient attached to
the term v`(w)−`(z)−1 in Pz,w. This implies µ(z,w) is nonzero only if the maximum bound is
attained, which may only occur if both (a) z ≤ w and (b) `(z) and `(w) have opposite parities.
Using these properties, one may define the Kazhdan–Lusztig polynomials recursively using
the formula

Pz,w = v2(1−c)Psz,sw + v
2cPz,sw − ∑

sx<x<sw
µ(x, sw)v`(w)−`(x)Pz,x,

where we define c = 0, if z < sz, and c = 1, otherwise [18]. One should note that knowledge
of µ-values is a necessity for computing these polynomials and that the computation of the
µ-values is not known to be any easier than computing the entire polynomial. However, the
computation of each polynomial would be simplified if we had a method of quickly computing
µ-values. Here is the beginning of a collection of well-known results regarding µ-values.

Lemma 3.1.3. Let (W,S) be a Coxeter system of type Γ and let z,w ∈W (Γ).

(a) If `(z) = `(w) mod 2 or z /≤ w, then µ(z,w) = 0.

(b) If z ≤ w and `(z) = `(w) − 1, then Pz,w = 1, and in particular, µ(z,w) = 1.

(c) If there exists s ∈ L(w)/L(z), then either (i) µ(z,w) = 0 or (ii) both z = sw and
µ(z,w) = 1.

(d) If there exists s ∈ R(w)/R(z), then either (i) µ(z,w) = 0 or (ii) both z = ws and
µ(z,w) = 1.

Proof. All four parts appear in [18] and [19]. If Γ is simply-laced, i.e., m(s, t) ≤ 3 for all
s, t ∈ S(Γ), then Parts (a), (c), and (d) come from Proposition 2.1 of [11]. Also, Part (b) is
an exercise in §7.10 of [15].

One should note that Parts (c) and (d) of the previous proposition highlight that µ(z,w) =

0 whenever L(w) /⊆ L(z) or R(w) /⊆ R(z), with the only exceptions occurring when the
conditions of (c) and (d) are satisfied. The following lemma is another result relating the
lengths of two group elements and their corresponding µ-value.

Lemma 3.1.4. Let (W,S) be a Coxeter system of type Γ and suppose I = {s, t} ⊆ S(Γ)

where m(s, t) ≥ 3. If z ≤ w ∈W (Γ) and

(a) L(w) ⊆ L(z),

(b) `(w) − `(z) ≥ 3,
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(c) at least one of st (w) and st (w) exists, and

(d) ∣L(w) ∩ I ∣ = ∣L(z) ∩ I ∣ = 1,

then µ(z,w) = µ ( st (z), st (w)).

Proof. This comes from [19].

Here the star operations in µ ( st (z), st (w)) are independent of each other, that is,
µ ( st (z), st (w)) is one of four options. We will use this fact several times in the proof of
Lemma 4.2.1. There is a right-handed analog of Lemma 3.1.4 stating that, under symmetric
conditions, µ(z,w) = µ ( st (z), st (w)).

Lemma 3.1.5. Let (W,S) be a Coxeter system of type Γ and suppose I = {s, t} ⊆ S(Γ)

where m(s, t) ≥ 3. If

(a) L(z) ∩ I ≠ L(w) ∩ I and

(b) ∣L(z) ∩ I ∣ = ∣L(w) ∩ I ∣ = 1,

then µ (z, st (w)) = µ ( st (z),w) + µ ( st (z),w) − µ (z, st (w)) .

Proof. This originated in [18] and is stated explicitly as Proposition 5.9 of [9].

There is a right-handed analog to Lemma 3.1.5 in which we would conclude

µ (z, st (w)) = µ ( st (z),w) + µ ( st (w),w) − µ (z, st (w)) .

We will be revisiting µ-values in depth and adding to our collection of results in Chapter 4
where this list will be extended in the context of Coxeter systems of type C̃n. For now, we
return to the C ′-basis to define multiplication of basis elements in the following theorem.

Theorem 3.1.6. Let (W,S) be a Coxeter system of type Γ, let w ∈W (Γ), and let s ∈ S(Γ).
Then multiplication on the C ′-basis is determined recursively by

C ′
sC

′
w ∶=

⎧⎪⎪
⎨
⎪⎪⎩

C ′
sw +∑µ(z,w)C ′

z if `(sw) > `(w)

δC ′
sw otherwise,

where we are summing over all sz < z < w.

Proof. This was stated explicitly in [14] and implicitly in [18, §2.2].

Notice the reappearance of µ-values in the above formula. This should come as no
surprise, but adds to the motivation for finding streamlined methods of computing µ-values.
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3.2 Generalized Temperley–Lieb algebras

Let (W,S) be a Coxeter system of type Γ. Define J(Γ) as the two-sided ideal of H(Γ)

generated by the elements

∑
w∈⟨s,t⟩

Tw

where ⟨s, t⟩ is the subgroup generated by pairs of adjacent vertices on the Coxeter graph,
that is, m(s, t) ≥ 3.

Example 3.2.1. In type C̃2,

⟨s1, s2⟩ = {e,1,2,12,21,121,212,1212} and,

⟨s2, s3⟩ = {e,2,3,23,32,232,323,2323},

so J(C̃2) is generated by

Te + T1 + T2 + T12 + T21 + T121 + T212T1212, and

Te + T2 + T3 + T23 + T32 + T232 + T323 + T2323.

We now define the Temperley–Lieb algebra of type Γ as the quotient Z[v, v−1]-algebra
H(Γ)/J(Γ), denoted TL(Γ). Let the image of Tw under the canonical epimorphism θ ∶

H(Γ)→ TL(Γ) be denoted by tw.

Theorem 3.2.2. [6, Theorem 6.2] Let (W,S) be a Coxeter system of type Γ. Then the set
{tw ∣ w ∈ FC(Γ)} is a Z[v, v−1]-basis for TL(Γ).

This basis is called the t-basis and will be used in the construction of other useful bases
for the Temperley–Lieb algebra of type Γ. For si ∈ S(Γ), define bsi ∶= v−1ti + v−1te and
abbreviate bsi as bi. Let w ∈ FC(Γ) with reduced expression w = sx1⋯sxr and define

bw ∶= bx1⋯bxr .

Note that if w and w′ are two different reduced expressions for w ∈ FC(Γ), then bw = bw′
since w and w′ are commutation equivalent and bibj = bjbi when m(i, j) = 2. So we will write
bw when we do not have a particular reduced expression in mind.

Theorem 3.2.3. [6] Let (W,S) be a Coxeter system of type Γ. The set {bw ∣ w ∈ FC(Γ)} is
a Z[v, v−1]-basis for TL(Γ).

The basis {bw ∣ w ∈ FC(Γ)} is called the monomial basis for the Temperley–Lieb algebra
of type Γ.
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Theorem 3.2.4. [8] Let (W,S) be a Coxeter system of type C̃n. Then TL(C̃n) is generated
as a unital algebra by {b1, . . . , bn+1} subject to:

(a) b2
i = δbi for all i;

(b) bibj = bjbi if ∣i − j∣ > 1;

(c) bibjbi = bi if ∣i − j∣ = 1 and 1 < i, j < n + 1;

(d) bibjbibj = 2bibj if {i, j} = {1,2} or {n,n + 1}.

Proof. Here we check that the relations hold in type C̃n, but to find the proof in its entirety,
the reader shall be referred to [8, Proposition 2.6]. Recall bi = v−1ti + v−1te and δ = v−1 + v.
Note that te is the multiplicative identity in TL(C̃n), meaning tetw = tw for w ∈ FC(Γ). We
should also note that t2i = titi = v

2te + (v−1 − 1)ti, using the formula defined in Section 3.1.

(a) We see that

b2
i = (v−1ti + v

−1te)(v
−1ti + v

−1te)

= v−2(t2i + 2tite + t
2
e)

= v−2(v2te + (v1 − 1)ti + 2tite + t
2
e)

= v−2(v2te + (v2 − 1)ti + 2ti + te)

= v−2(v2ti + v
2te + ti + te)

= v−2ti + v
−2te + ti + te

= (v−1 + v)(v−1ti + v
−1te)

= δbi.

(b) Assume ∣i−j∣ > 1 so that m(i, j) = 2. Since is = ji and `(ij) > `(j), titj = tij = tji. Then

bibj = (v−1ti + v
−1te)(v

−1tj + v
−1te)

= v−2(tij + tite + tjte + te)

= v−2(tij + ti + tj + te)

= v−2(tji + ti + tj + te)

= (v−1tj + v
−1te)(v

−1ti + te)

= bjbi.

(c) Let i, j be such that ∣i − j∣ = 1 and 1 < i, j < n + 1. Then m(i, j) = 3. Note that

Tiji + Tij + Tji + Ti + Tj + Te ∈ J(C̃n).
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Subsequently
tiji + tij + tji + ti + tj + te = 0 ∈ TL(C̃n).

Then we find

bibjbi = (v−1ti + v
−1te)(v

−1tj + v
−1te)(v

−1ti + v
−1te)

= v−2(titj + tite + tjte + te)(v
−1ti + v

−1te)

= v−2(tij + ti + tj + te)(v
−1ti + v

−1te)

= v−3(tiji + t
2
i + tji + ti + tij + tj + te)

= v−3(tiji + v
2te + (v2 − 1)ti + tji + ti + tij + tj + te)

= v−3(v2te + (v2 − 1)ti + ti + (tiji + tji + tij + ti + tj + te))

= v−3(ti + (v2 − 1)ti + v
2te) + 0

= v−3(v2ti + v
2te)

= v−1ti + v
−1te

= bi.

(d) Lastly, let {i, j} be such that the set is equal to either {1,2} or {n,n + 1}. Then
m(sisj) = 4. We proceed by playing the same game as above. Note that

Tijij + Tiji + Tjij + Tij + Tji + Ti + Tj + Te ∈ J(C̃n),

meaning
tijij + tiji + tjij + tij + tji + ti + tj + te = 0 ∈ TL(C̃n).

Then

bibjbibj = (v−1ti + v
−1te)(v

−1tj + v
−1te)(v

−1ti + v
−1te)(v

−1tj + v
−1te)

= v−4(titj + titj + ti + tj + t
2
i + t

2
j + tit

2
j + t

2
i tj

+ (titjtitj + titjti + tjtitj + titj + tjti + ti + tj + te))

= v−4(tij + tij + ti + tj + t
2
i + t

2
j + tit

2
j + t

2
i tj

+ (tijij + tiji + tjij + tij + tij + ti + tj + te))

= v−4(tij + tij + ti + tj + v
2te + (v2 − 1)ti + v

2te

+ (v2 − 1)tj + ti(v
2te + (v2 − 1)tj) + (v2te + (v2 − 1)tj)tj) + 0

= v−4(v22tij + v
22ti + v

22tj + v
22te)

= 2(v−1ti + v
−1te)(v

−1tj + v
−1te)

= 2bibj.
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It is known that we may obtain TL(Bn) and TL(B′
n) from TL(C̃n) by deleting the

necessary generators and relations [8].
Let (W,S) be a Coxeter system of type Γ, let L be the free Z[v−1]-submodule of TL(Γ)

with basis {v−`(w)tw ∣ w ∈ FC(Γ)}, and let π ∶ L → L/v−1L be the canonical projection. We
will again use the t-basis to build another basis for TL(Γ).

Theorem 3.2.5. [12, Theorem 2.3] Recall the involution ι from Theorem 3.1.2. There exists
a unique basis {cw ∣ w ∈ FC(Γ)} for L such that ι(cw) = cw and π(cw) = π(v−`(w)tw) for all
w ∈ FC(Γ).

This basis is called the c-basis, or the canonical basis. Returning to the canonical epimor-
phism θ ∶ H(Γ)→ TL(Γ) presented in Section 3.1, it is known that θ ({C ′

w ∣ w ∈ FC(Γ)}) is a
basis for TL(Γ) [13, §1.2]. Notice we are indexing only by fully commutative elements here.
We say the Coxeter system satisfies the projection property if θ (C ′

w) = cw for w ∈ FC(Γ).
Utilizing Lemma 3.1.3(b), we find that ci = bi = v−1ts + v−1te for si ∈ S(Γ) and csi is abbrevi-
ated as ci. In some Coxeter systems, the monomial and canonical bases are equal, such as
in types An and Dn [12]. However, not all Coxeter systems exhibit this characteristic, such
as in type C̃n [12, Remark 3.7(1)].

Theorem 3.2.6. [9, Theorem 5.13] Let (W,S) be a Coxeter system of type Γ that satisfies
the projection property and let w ∈ FC(Γ) and s ∈ S(Γ). Then multiplication is determined
recursively via

cscw ∶=

⎧⎪⎪
⎨
⎪⎪⎩

csw +∑µ(z,w)cz, if `(sw) > `(w)

δcsw, otherwise,

where we are summing over sz < z < w and we define cw = 0 for w /∈ FC(Γ).

Unlike in the monomial basis, if w = x1x2⋯xr is a reduced expression for w ∈ W (Γ),
cx1cx2⋯cxr is not necessarily equal to cw.

Let (W,S) be a Coxeter system of type Γ. There is no known example of a Coxeter
system failing to satisfy the projection property. According to [22, Theorem 1.11], we have

θ(C ′
w) =

⎧⎪⎪
⎨
⎪⎪⎩

cw, if w ∈ FC(Γ)

0, if w /∈ FC(Γ)

if and only if Γ is a non-branching Coxeter graph and Γ ≠ F̃4. This follows immediately from
the work of Shi in [23] and [24]. This implies that in Coxeter systems of type C̃n, θ(C ′

w) = cw,
for w ∈ FC(C̃n). Note that the additional condition that θ(C ′

w) = 0 for w /∈ FC(Γ) is not a
requirement of the projection property.
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The summation in Theorem 3.2.6 has a few subtleties for nonzero µ-values that we should
make explicit. With s and w as in the theorem, the only candidates z ∈W (C̃n) for nonzero
µ(z,w) are if

(a) z < w,

(b) sz < z, and

(c) z ∈ FC(C̃n).

To conclude this chapter we provide two results, one of which incorporates star operations
and multiplication of elements of {cw ∣ w ∈W (C̃n)}.

Lemma 3.2.7. [9, Proposition 6.3(ii)] Let (W,S) be a Coxeter system of type C̃n and let
w ∈ FC(C̃n) with tw < w. Then

cscw = c st (w) + c st (w).

Lemma 3.2.7 applies to all Coxeter systems of type Γ that have the projection property,
but we will only be using it in the context of Coxeter systems of type C̃n. If any of the terms
in the equation are undefined, then they are defined to be zero.

Lemma 3.2.8. Let (W,S) be a Coxeter system of type C̃n and let w = stx be a reduced
product where m(s, t) ≥ 3 and tx ∈ FC(C̃n). Then

csctx =

⎧⎪⎪
⎨
⎪⎪⎩

cw, if s /∈ L(x)

cw + cx, if s ∈ L(x).

Proof. First notice that `(stx) > `(tx) so that we have

csctx = cstx +∑µ(z, tx)cz.

Assume µ(z, tx) ≠ 0 in the sum above for some z. Then sz < z < tx and z ∈ FC(C̃n),
by Theorem 3.2.6. Since m(s, t) ≥ 3, s ∈ L(z), and z ∈ FC(C̃n), we find t /∈ L(z). Since
s ∈ L(z)/L(tx), we have L(z) /⊆ L(tx), so the only possible nonzero µ-value occurs in the
case that y ∈ L(tx)/L(z) and z = y(tx), by Lemma 3.1.3(c). Since we require s ∈ L(z), we
find that the only generator satisfying y ∈ L(tx)/L(z) is y = t.

If z = t(tx) = x, we have µ(z, tx) = 1, and otherwise µ(z, tx) = 0. We now check two cases.

(a) Suppose s /∈ L(x). Since s ∈ L(z) and t(tx) = x, we find that z ≠ t(tx). So there is no
z such that µ(z, tx) ≠ 0, meaning csctx = cstx = cw.
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(b) Suppose s ∈ L(x). Then µ(z, tx) = 1 for z = t(tx) = x, meaning csctx = cw + cx.

Note that we do not require w to be fully commutative. In the event that csctx = cw + cx,
meaning s ∈ L(x), we find that cw = 0 unless m(s, t) = 4.

Over the course of Chapter 4, we will implement results encountered thus far to compute
products of the form cx1cx2⋯cxr such that x1x2⋯xr is a type I or type II element.
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Chapter 4

Computations in TL(C̃)

Let (W,S) be a Coxeter system of type C̃n for n even. The goal of this chapter is to compute
products of elements of the c-basis. In addition, we will be computing µ-values related to
these products. We will say cx1cx2⋯cxr is of type I if x1x2⋯xr ∈W (C̃n) is reduced and a type
I element and of type II if x1x2⋯xr ∈ W (C̃n) is reduced and a type II element. Note that
the product cx1cx2⋯cxr may be a linear combination of elements from {cw ∣ w ∈ FC(C̃n)}.

Any product that is missing a generator from {ci ∣ i ∈ S(Γ)} is handled by known
results for Coxeter systems of type An and Bn. It turns out that non-cancellable elements
with full support provide the foundation for inductive arguments that are used to prove
the faithfulness of the desired diagram algebra since computations of µ-values are mostly
well-behaved with respect to star operations.

In Section 4.1, we consider a type I product that begins and ends with end generators;
however, the tools presented allow for the computation of products that have the zigzagging
shape of a type I element, but begin and end with any generator. In Section 4.3, we present
type II products in the case where n is even and our product begins and ends with c1c3⋯cn+1

since the corresponding type II element in W (C̃n) is not star reducible to a product of
commuting generators. Our process will also allow us to compute any type II product that
begins with c2c4⋯cn. Furthermore, by using the symmetry of the Coxeter graph, we are also
able to compute any type II product that ends with c2c4⋯cn, thus granting the ability to
compute all type II products. Furthermore, we only present the case when n is even, but we
believe that the case where n is odd is simpler since every type II element of FC(C̃n) may
be made into a product of commuting generators by some sequence of star reductions. Let’s
get started.
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4.1 Computations involving type I elements

Our first task is to compute products involving type I elements in the c-basis. Our first result,
Lemma 4.1.2, is a restatement of Lemma 3.2.7 designed to explicitly handle the product cscw
where sw is a type I element in W (C̃n). Lemma 4.1.3 is introduced to manage elements
that occur in the star reductions caused by Lemma 4.1.2. We restricted n to be even at the
beginning of the chapter, however, the results presented in Section 4.1 are independent of
the parity of n.

Remark 4.1.1. Observe that if w ∈ FC(C̃n) and s ∈ S such that s /∈ supp (w), then cscw = csw
since ` (sw) > ` (w) but sw /≤ w rendering an empty summation in the calculation cscw =

csw +∑µ (z,w) cz by Theorem 3.2.6.

Lemma 4.1.2. Let (W,S) be a Coxeter system of type C̃n. Let z ∈ FC(C̃n) and s, t ∈ S
such that z, tz, and stz are all of type I. Then

csctz =

⎧⎪⎪
⎨
⎪⎪⎩

cstz, if s /∈ L (z)

cstz + cz, if s ∈ L (z) .

Proof. This is an immediate application of Lemma 3.2.8.

Notice that certain products cause a ‘split’ in Lemma 4.1.2 with terms cstz and cz. If we
multiply by another generator s′ ∈ S(Γ) for which `(s′z) > `(z), we find that cs′z may no
longer be indexed by a fully commutative element (in which case part of our summation will
become 0). Lemma 4.1.3 is designed to explicitly handle this situation.

Lemma 4.1.3. Let (W,S) be a Coxeter system of type C̃n and suppose z ∈ FC(C̃n) and
t ∈ S(Γ) such that z and tz are of type I, and let s ∈ S (Γ) such that m(s, t) ≥ 3 and stz is
no longer of type I. Then

csctz =

⎧⎪⎪
⎨
⎪⎪⎩

cstz + cz, if m(s, t) = 4,

cz, if m(s, t) = 3.

Proof. Since m(s, t) ≥ 3 and t (tz) < z, we have csctz = c st (tz)+c st (tz), by Lemma 3.2.7. Note

that st (tz) = stz. But stz is no longer of type I, forcing stz = stsz′ for some z′ ∈ FC(C̃n)
to be the case since sts must be a subword of stz. Thus, if m(s, t) = 3, then stz /∈ FC(C̃n)
and so cstz = 0. Otherwise, if m(s, t) > 3, we have cstz ≠ 0. Also note st (tz) = z ∈ FC(C̃n).
Therefore we have the desired result.

An example of the type of element encountered in Lemma 4.1.3 is given in Figure 4.1.
Using Lemmas 4.1.2 and 4.1.3, we may compute products of elements of the c-basis that are
of type I.

30



5

4

3

2

1

2

3

2

Figure 4.1: Example of a heap involved in the proof of Lemma 4.1.3.

Example 4.1.4. Let (W,S) be a Coxeter system of type C̃4. We will compute the product
c1c2c3c4c5c4c3c2c1c2c3c4c5 ∈ TL(C̃4) as follows. Note that Lemma 4.1.2 is used in every step
of this computation and Lemma 4.1.3 is used on every line after its first noted occurrence.
We see that

c1c2c3c4c5c4c3c2c1c2c3c4c5 = c1c2c3c4c5c4c3c2c12345 (4.1.1)

= c1c2c3c4c5c4c3 (c212345 + c2345)

= c1c2c3c4c5c4 (c3212345 + c345) (4.1.3)

= c1c2c3c4c5 (c43212345 + c45)

= c1c2c3c4 (c543212345 + c545 + c5)

= c1c2c3 (c4543212345 + c43212345 + 2c45)

= c1c2 (c34543212345 + c3212345 + 2c345)

= c1 (c234543212345 + c212345 + 2c2345)

= c1234543212345 + c12345 + 2c12345

= c1234543212345 + 3c12345,

where the heaps of the elements in the final sum of the computation may be found in
Figures 4.2(a) and 4.2(b).

Remark 4.1.5. Recall the notation presented in Section 2.3 for type I elements in Coxeter
systems of type C̃n where H(zR,31,5 ) and H(zR,11,5 ) may be found in Figures 4.2(a) and 4.2(b),
respectively. Let Z = cncn−1⋯c2c1c2⋯cncn+1. Then, using the techniques from Example 4.1.4,
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(a) H(1234543212345)
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(b) H(12345)

Figure 4.2: Heaps involved in Example 4.1.4.

we find that

c1c2⋯cn+1 = czR,1
1,n+1

,

c1c2⋯cn+1Z = czR,3
1,n+1

+ 3czR,1
1,n+1

,

c1c2⋯cn+1Z
2 = czR,5

1,n+1
+ 5czR,3

1,n+1
+ 10czR,1

1,n+1
,

c1c2⋯cn+1Z
3 = czR,7

1,n+1
+ 7czR,5

1,n+1
+ 21czR,3

1,n+1
+ 35czR,1

1,n+1
,

and so on. Notice that the lead term in each sum is indexed by zR,2k+1
1,n+1 , where k corresponds

to the exponent of Zk. Furthermore, there is also a term indexed by zR,2j+1
1,n+1 for every 0 ≤ j < k.

Moreover, we have the following calculations, which appear during the previous computations
but have been relocated to draw attention to their similarities:

cn+1Z = czL,2
n+1,n+1

+ c(n+1)n(n+1) + cn+1,

cn+1Z
2 = czL,4

n+1,n+1
+ 4czL,2

n+1,n+1
+ 3c(n+1)n(n+1) + 3cn+1,

cn+1Z
3 = czL,6

n+1,n+1
+ 6czL,4

n+1,n+1
+ 15czL,2

n+1,n+1
+ 10c(n+1)n(n+1) + 10cn+1.

Again we are finding that the lead term of each sum is indexed by zL,2kn+1,n+1, where k cor-

responds to the exponent of Zk and that there is also a term indexed by zL,2jn+1,n+1 for every
0 ≤ j < k.
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These computations are fairly straightforward, requiring minimal tools. However, the
computations of type II products require many tools and can become unexpectedly unwieldy.
Section 4.2 is dedicated to a single lemma that is crucial in the calculation of type II products.

4.2 A crucial lemma

This section is dedicated to the proof of Lemma 4.2.1 in the context of Coxeter systems of
type C̃n where n is restricted to be even. This lemma is necessary in Section 4.3, where we
present computations of type II products in TL(C̃n).

Lemma 4.2.1. Let (W,S) be a Coxeter system of type C̃n, where n is even. Consider the
reduced products

y =X1,n+1

and
w =X3,n+1X2,nX1,n+1X2,nX1,n+1,

which are both elements of FC(C̃n). Then µ (y,w) = 1.

1 3 5 ⋯ n + 1

2 4 ⋯ n

1 3 5 ⋯ n + 1

2 4 ⋯ n

3 5 ⋯ n + 1

(a) H(w) =H(w1)

1 3 5 ⋯ n + 1

2 4 ⋯ n

1 3 5 ⋯ n + 1

2 4 ⋯ n

5 ⋯ n + 1

(b) H(w2)

1 3 5 ⋯ n + 1

2

(c) H(y2)

1 3 5 ⋯ n + 1

2 4

(d) H(y3)

Figure 4.3: Heaps involved in the proof of Lemma 4.2.1.

Proof. Suppose n ≥ 4 is even. The proof that follows is easily modified for the case when
n = 2. We will make repeated use of previous lemmas, especially Lemmas 3.1.4 and 3.1.5, to
achieve the desired result. Along the way, a sequence {(yk,wk, Ik)} will be defined. First,
define

y1 ∶= y, w1 ∶= w, I1 ∶= {2,3}.
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One may find H (w) in Figure 4.3(a). Then

L (y1) = {1,3, . . . , n + 1}

and
L (w1) = {3,5, . . . , n + 1},

with L (w1) ⊆ L (y1). Also, note that ` (w1) − ` (y1) ≥ 3 and ∣L (w1) ∩ I1∣ = ∣L (y1) ∩ I1∣ = 1.
With respect to I1, we obtain

y2 ∶= 23 (y1) = 2X1,n+1,

where H (y2) may be found in Figure 4.3(c), and

w2 ∶= 23 (w1) =X5,n+1X2,nX1,n+1X2,nX1,n+1,

whereH (w2) is presented in Figure 4.3(b). Sincem (2,3) = 3 and 23 (w1) exists, Lemma 3.1.4
may be applied to determine

µ (y,w) = µ (y1,w1)

= µ ( 23 (y1) , 23 (w1))

= µ (y2,w2) .

Next, let I2 = {4,5}. Then

L (y2) = {2} ∪ {5, . . . , n + 1}

and
L (w2) = {2} ∪ {5, . . . , n + 1},

with L (w2) ⊆ L (y2). Again, it is the case that ` (w2) − ` (y2) ≥ 3 and ∣L (w2) ∩ I2∣ =

∣L (y2) ∩ I2∣ = 1. With respect to I2, we obtain

y3 ∶= 45 (y2) =X2,4X1,n+1,

where H (y3) is provided in Figure 4.3(d), and

w3 ∶= 45 (w2) =X7,n+1X2,nX1,n+1X2,nX1,n+1.

For the remainder of the proof, we will not provide heap representations for the remaining
sequence of group elements. However, the idea is to use Lemmas 3.1.4 and 3.1.5 to ‘whittle
away’ at the heap of w and build upon the heap of y, so that the two will eventually differ by
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a single generator from S (Γ), rendering a µ-value of 1 by Lemma 3.1.3(b). As m (4,5) = 3
and 45 (w2) exists, Lemma 3.1.4 may be applied to see

µ (y,w) = µ (y1,w1)

= µ (y2,w2) (by above)

= µ ( 45 (y2) , 45 (w2))

= µ (y3,w3) .

Proceeding in this fashion, define

I3 ∶= {6,7}, I4 ∶= {8,9}, . . . , I(n−2)/2 ∶= {n − 2, n − 1}

so that, for k = 3,4, . . . , (n − 2)/2, we have

yk+1 ∶= Ik (yk) and wk+1 ∶= Ik (wk) .

Note that this sequence of star operations has two effects. First, the sequence increases the
length of y by one in each step by multiplying on the left by 2,4, . . . , n − 4, and n − 2 (i.e.,
X2,n−2). Second, the length of w is decreased by one in each step by multiplying on the left
by 3,5, . . . , n − 3, and n − 1 (i.e., X3,n−1). This process renders

yn/2 ∶=X2,n−2X1,n+1

and
wn/2 ∶= (n + 1)X2,nX1,n+1X2,nX1,n+1.

At each step, the conditions of Lemma 3.1.4 are satisfied. That is, for each k, L (wk) ⊆ L (yk),
` (wk)−` (yk) ≥ 3, wk+1 = Ik (wk) exists, m (2k,2k + 1) = 3, and ∣L (wk)∩Ik∣ = ∣L (yk)∩Ik∣ = 1.
Thus, it shall be true that

µ (y,w) = µ (y1,w1)

= µ (y2,w2)

⋮

= µ (y(n−2)/2,w(n−2)/2)

= µ (yn/2,wn/2) .

At this point, there does not exist any I = {s, t} such that m (s, t) = 3 and st (wn/2)
exists. So Lemma 3.1.4 is not applicable at this time. Instead, Lemma 3.1.5 shall be of use
in the following manner. Define

I ∶= In/2 = {n,n + 1}
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and
w′
n/2 ∶=X2,nX1,n+1X2,nX1,n+1,

so that I (w′
n/2) = wn/2. Note that

L (yn/2) = {2,4, . . . , n − 2} ∪ {n + 1}

and
L (w′

n/2) = {2,4, . . . , n}.

Then
L (yn/2) ∩ In/2 ≠ L (w′

n/2) ∩ In/2,

while
∣L (yn/2) ∩ In/2∣ = ∣L (w′

n/2) ∩ In/2∣ = 1.

With respect to I = In/2, we obtain

y(n+2)/2 ∶= I (yn/2) =X2,nX1,n+1

and
I (w′

n/2) =X2,n−2X1,n+1X2,nX1,n+1.

However, notice that I (yn/2) is not defined for I = In/2. Then µ ( I (yn/2) ,w
′
n/2) = 0. Then

Lemma 3.1.5 indicates that

µ (yn/2, I (w′
n/2)) = µ ( I (yn/2) ,w

′
n/2) + µ ( I (yn/2) ,w

′
n/2) − µ (yn/2, I (w′

n/2))

= µ ( I (yn/2) ,w
′
n/2) + 0 − µ (yn/2, I (w′

n/2))

= µ ( I (yn/2) ,w
′
n/2) − µ (yn/2, I (w′

n/2)) .

Thus

µ (y,w) = µ (yn/2,wn/2)

= µ (yn/2, I (w′
n/2))

= µ ( I (yn/2) ,w
′
n/2) − µ (yn/2, I (w′

n/2))

= µ (y(n+2)/2,w
′
n/2) − µ (yn/2, I (w′

n/2)) .
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We utilize Lemma 3.1.5 one more time to determine µ (y(n+2)/2,w
′
n/2). Define

I(n+2)/2 ∶= {1,2}

and
w′

(n+2)/2 ∶=X4,nX1,n+1X2,nX1,n+1

so that w(n+2)/2 ∶= 12 (w′
(n+2)/2) (to maintain the notation of I (w′

k) = wk). Also, notice

L (y(n+2)/2) = {2, . . . , n}

and
L (w′

(n+2)/2) = {1} ∪ {4, . . . , n}.

Then
L (y(n+2)/2) ∩ I(n+2)/2 ≠ L (w′

(n+2)/2) ∩ I(n+2)/2

while
∣L (y(n+2)/2) ∩ I(n+2)/2∣ = ∣L (w′

(n+2)/2) ∩ I(n+2)/2∣ = 1.

With respect to I(n+2)/2, we obtain

y(n+4)/2 ∶= 12 (y(n+2)/2) = 1X2,nX1,n+1

and
12 (y(n+2)/2) =X4,nX1,n+1.

Maintaining consistent labeling, define

w(n+4)/2 ∶= w
′
(n+2)/2.

Note that 12 (w′
(n+2)/2) is not defined, meaning µ (y(n+2)/2, 12 (w′

(n+2)/2)) = 0. Then, by

Lemma 3.1.5, we get

µ (y(n+2)/2,w
′
n/2) = µ (y(n+2)/2, 12 (w(n+2)/2))

= µ ( 12 (y(n+2)/2) ,w
′
(n+2)/2) + µ ( 12 (y(n+2)/2) ,w

′
(n+2)/2)

− µ (y(n+2)/2, 12 (w′
(n+2)/2))

= µ ( 12 (y(n+2)/2) ,w
′
(n+2)/2) + µ ( 12 (y(n+2)/2) ,w

′
(n+2)/2) − 0

= µ (y(n+4)/2,w(n+4)/2) + µ ( 12 (y(n+2)/2) ,w
′
(n+2)/2) .
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Therefore, recalling I = {n,n + 1},

µ (y,w) = µ (y(n+2)/2,w
′
n/2) − µ (yn/2, I (w′

n/2))

= µ (y(n+4)/2,w(n+4)/2) + µ ( 12 (y(n+2)/2) ,w
′
(n+2)/2) − µ (yn/2, I (w′

n/2)) .

Now, we make several applications of Lemma 3.1.4 to evaluate µ (y(n+4)/2,w(n+4)/2). De-
fine

I(n+4)/2 = {3,4}, I(n+6)/2 = {5,6}, . . . , In = {n − 1, n}

so that, for each k = (n + 4) /2, (n + 6) /2, . . . , n, there shall exist

yk+1 ∶= Ik (yk) and wk+1 ∶= Ik (wk) .

Note that this sequence of star operations has the effect of multiplying y(n+4)/2 on the left
by 3,5, . . . , n − 3, n − 1 (i.e, X3,n−1). In each step, the length is increased by one. Similarly,
w(n+4)/2 is multiplied on the left by 4,6, . . . , n−2, n (i.e., X4,n), where the length is decreased
by one in each step. Ultimately, there shall be

yn+1 ∶= In (yn) =X1,n−1X2,nX1,n+1

and
wn+1 ∶= In (wn) =X1,n+1X2,nX1,n+1.

At each step of the sequence, the conditions of Lemma 3.1.4 are satisfied. That is, for
each k ≤ n, L (wk) ⊆ L (yk), ` (wk) − ` (yk) ≥ 3, wk+1 = Ik (wk) exists, m (k − 1, k) = 3, and
∣L (wk) ∩ Ik∣ = ∣L (yk) ∩ Ik∣ = 1. Thus,

µ (y(n+4)/2,w(n+4)/2) = µ (y(n+6)/2,w(n+6)/2)

⋮

= µ (yn,wn)

= µ (yn+1,wn+1) .

Observe yn+1 ≤ wn+1 and ` (yn+1) = ` (wn+1) − 1. Then Lemma 3.1.3(b) indicates that

µ (yn+1,wn+1) = 1.

This implies (with I = {n,n + 1}) that

µ (y,w) = µ (y(n+4)/2,w(n+4)/2) + µ ( 12 (y(n+2)/2) ,w
′
(n+2)/2) − µ (yn/2, I (w′

n/2))

= 1 + µ ( 12 (y(n+2)/2) ,w
′
(n+2)/2) − µ (yn/2, I (w′

n/2)) .
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Now, recall that

12 (y(n+2)/2) =X4,nX1,n+1,

w′
(n+2)/2 =X4,nX1,n+1X2,nX1,n+1,

yn/2 =X2,n−2X1,n+1,

I (w′
n/2) =X2,n−2X1,n+1X2,nX1,n+1,

and let φ be the graph automorphism of C̃n that is the reflection about the graph’s vertical
axis of symmetry. This map swaps 1 with n + 1, 2 with n, 3 with n − 1, and so on. Thus
Py,w = Pφ(y),φ(w), and in particular, µ (y,w) = µ (φ (y) , φ (w)). Then notice

φ ( 12 (y(n+2)/2)) = yn/2

and
φ (w′

(n+2)/2) = I (w′
n/2) .

Therefore, we have

µ ( 12 (y(n+2)/2) ,w
′
(n+2)/2) = µ (φ ( 12 (y(n+2)/2)) , φ (w′

(n+2)/2))

= µ (yn/2, I (w′
n/2)) .

This implies

µ (y,w) = 1 + µ ( 12 (y(n+2)/2) ,w
′
(n+2)/2) − µ (yn/2, I (w′

n/2))

= 1 + µ (yn/2, I (w′
n/2)) − µ (yn/2, I (w′

n/2))

= 1.

Thus the desired result is achieved, concluding the proof.

4.3 Computations involving type II elements

Now that we have Lemma 4.2.1, we may quickly develop a few more results that will allow
us to pursue computations of type II products in TL(C̃n), where n is even. The rest of this
section will be dedicated to the computation of such products.

Proposition 4.3.1. Let (W,S) be a Coxeter system of type C̃n with n even. Let y,w ∈

FC(C̃n) be the reduced products
y =X1,n+1Yk−j
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and
w =X3,n+1Yk,

respectively, where Yi consists of i copies of X2,nX1,n+1 and we define Yi = e for i ≤ 0. Then

µ (y,w) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if j = 2

0, otherwise.

1 3 ⋯ n + 1

2 ⋯ n

1 3 ⋯ n + 1

⋮

2 ⋯ n

1 3 ⋯ n + 1

(a) H(y)

1 3 ⋯ n + 1

2 ⋯ n

1 3 ⋯ n + 1

⋮

2 ⋯ n

3 ⋯ n + 1

(b) H(w)

Figure 4.4: Heaps involved in the proof of Lemma 4.3.1.

Proof. As a reference, H(y) and H(w) are provided in Figure 4.4(a), where there is a total
of 2 (k − j) + 1 layers, and Figure 4.4(b), where there is a total of 2k + 1 layers, respectively.
First assume j is odd. Then

` (y) =
n + 2

2
+ (k − j) (n + 1)

and
` (w) =

n

2
+ k (n + 1) .

Now compute the difference in length of w and y;

` (w) − ` (y) = (
n

2
+ k (n + 1)) − (

n + 2

2
+ (k − j) (n + 1))

=
n

2
+ k (n + 1) −

n + 2

2
− k (n + 1) + j (n + 1)

= j (n + 1) − 1

which must be even as both j and n + 1 are odd. Therefore, y and w must have the same
parity. So µ (y,w) = 0 for j odd by Lemma 3.1.3(a).

40



Next, we consider j even. If j = 0, we see y = X1,n+1Yk, and w = X3,n+1Yk, in which case
y /≤ w, indicating µ (y,w) = 0 by Lemma 3.1.3(a). So assume k ≥ 2. We chase through a
similar set of star operations as seen in Lemma 4.2.1 to see

µ (y,w) = µ (X1,n−1Yk−j+1,X1,n+1Yk−1) .

Let
y′ ∶=X1,n−1Yk−j+1

and
w′ ∶=X1,n+1Yk−1.

If j = 2, then ` (y′) = ` (w′) − 1, and thus

µ (y,w) = µ (y′,w′) = µ (X1,n−1Yk−1,X1,n+1Yk−1) = 1

via Lemmas 3.1.3(b) and 3.1.4. However, if k > 2, we see that

L (y′) = {1,3,5, . . . , n − 1}

and
L (w′) = {1,3,5, . . . , n − 1, n + 1},

where L (y′) ⊆ L (w′) and L (w′) /L (y′) = {n + 1}. Yet y′ ≠ (n + 1)w′. Therefore, if j > 2,
then

µ (y,w) = µ (y′,w′) = 0

by Lemma 3.1.3(c), thus concluding the proof.

We have now completed the final necessary µ-value calculation and will begin introducing
computations of type II products in the c-basis.

Corollary 4.3.2. Let (W,S) be a Coxeter system of type C̃n, where n is even and suppose
we have the reduced product

w =X3,n+1Yk,

where Yk = e for k < 1. Then
c1cw = c1w + cX1,n+1Yk−2 .

Proof. Recall H(w) may be found in Figure 4.4(b) with a total of 2k + 1 layers. First, recall
Theorem 3.2.6, where for any w ∈W (C̃n) and any s ∈ S, we have

cscw =

⎧⎪⎪
⎨
⎪⎪⎩

csw +∑µ (y,w) cy, if ` (sw) > ` (w)

δcw, otherwise,
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where cx = 0 for x /∈ FC(C̃n) and we are summing over all y ∈W (C̃n) satisfying sy < y < w in
the Bruhat order. Note that

1w =X1,n+1Yk

(see Figure 4.4(a) with a total of 2k + 1 layers) and that

` (1w) > ` (w) .

Then
c1cw = c1w + ∑

1y<y<w
µ (y,w) cy.

By Proposition 4.3.1,
µ (X1,n+1Yk−2,X1,n+1Yk) = 1,

meaning cX1,n+1Yk−2 appears in the sum above.
Now we proceed by arguing that no other terms with nonzero coefficient appear in the

sum. Let y ∈W (C̃n) such that

(a) y < w,

(b) 1y < y, and

(c) y ∈ FC(C̃n).

So 1 ∈ L (y). But y < w, and so ` (w) − ` (y) > 1. By Lemmas 3.1.3(c) and 3.1.3(d), we must
have L (w) ⊆ L (y) and R (w) ⊆R (y) in order for µ (y,w) ≠ 0. Note that

L (w) = {3,5, . . . , n + 1}

and
R (w) = {1,3,5, . . . , n + 1}.

Therefore, we must have

L (y) = {1,3,5, . . . , n + 1} =R (y) .

Since y ∈ FC(C̃n), it must be the case that y is the reduced product X1,n+1Yl. But by
Proposition 4.3.1, µ (y,w) = 1 only when l = k − 2. So cX1,n+1Yk−2 is the only term appearing
in the sum. Thus c1cw = c1w + cX1,n+1Yk−2 .

We now systematically handle type II products in the c-basis. The first step is to compute
c2c4⋯cnc1c3⋯cn+1.
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Lemma 4.3.3. Let (W,S) be a Coxeter system of type C̃n, where n is even. Let w ∈ FC(C̃n)
be the reduced product X2,nX1,n+1. Then

c2c4⋯cnc1c3⋯cn−1cn+1 = cX2,nX1,n+1 .

Proof. The calculation of c2c4⋯cnc1c3⋯cn+1 follows from Remark 4.1.1. That is,

c2c4⋯cnc1c3⋯cn−1cn+1 = cX2,nX1,n+1 .

Now that we have the foundation of our type II products, we will proceed by building
upward and right to left, when considering the heap of our group element (see Figure 2.7(b)).
That is, we want to recursively build the type II products that follow the pattern right to
left of the reduced product w =X1,n+1Yk where k ∈ N.

The next result will help manage computations where we encounter elements that are not
fully commutative in W (C̃n). An example of such a situation comes in calculating c3c2135 in
the context of TL(C̃4).

Lemma 4.3.4. Let (W,S) be a Coxeter system of type C̃n, where n is even. Consider the
reduced product w =X2,iX1,n+1Yk ∈ FC(C̃n) with k ≥ 0, 2 < i ≤ n, and i even. Then

ci+1cw =

⎧⎪⎪
⎨
⎪⎪⎩

c(i+1)w + cy, if i = n

cy, otherwise.

where y is the reduced product X2,i−2X1,n+1Yk. In particular,

ci+1cw′ =

⎧⎪⎪
⎨
⎪⎪⎩

c(i+1)w′ + cy′ , if i = n

cy′ , otherwise.

where we have the reduced products w′ =X2,iX1,n+1 and y′ =X2,i−2X1,n+1.

Proof. For reference, the heaps of w and y may be found in Figures 4.5(a) and 4.5(b),
respectively. Note that this result includes the case where i = n. First, notice the second
statement follows from the first. Next, note the generators i and i + 1 do not commute and
i + 1 ∈ L (y). Then by Lemma 3.2.7, we have

ci+1cw = c(i+1)w + cy.

Note that if i = n, (i + 1)w ∈ FC(C̃n), but if i < n, then (i + 1)w /∈ FC(C̃n), and so c(i+1)w = 0
by definition. Hence the desired result.
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1 ⋯ i − 1 ⋯ n + 1

2 ⋯ i − 2 ⋯ n

⋮

1 ⋯ i − 1 ⋯ n + 1

2 ⋯ i − 2 i

(a) H(w)

1 ⋯ i − 1 ⋯ n + 1

2 ⋯ i − 2 ⋯ n

⋮

1 ⋯ i − 1 ⋯ n + 1

2 ⋯ i − 2

(b) H(y)

Figure 4.5: Heaps involved in the proof of Lemma 4.3.4.

1 3 5

2 4

1 3 5

(a) H(13524135)

1 3 5

(b) H(135)

Figure 4.6: Heaps involved in Example 4.3.5.

Now that we have a library of tools, we should see an example.

Example 4.3.5. Consider the Coxeter system (W,S) of type C̃4. Then we may compute
c1c3c5c2c4c1c3c5 as follows:

c1c3c5c2c4c1c3c5 = c1c3c5c24135 (4.3.3)

= c1c3 (c524135 + c2135) (4.3.4)

= c1 (c3524135 + c32135 + c135) (3.2.8 and 4.3.4)

= c1 (c3524135 + 0 + c135) (3.2.6)

= c13524135 + δc135 (4.3.2 and 3.2.6).

The heaps of the last two group elements involved in this computation are provided in
Figures 4.6(a) and 4.6(b).

Remark 4.3.6. For Coxeter systems of type C̃n, where n is even, we follow the same pattern
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and tools to find

c1⋯cn+1 (c2⋯cnc1⋯cn+1)
2
= cX1,n+1Y2 + 2δcX1,n+1Y1 + (δ2 + 1) cX1,n+1 ,

c1⋯cn+1 (c2⋯cnc1⋯cn+1)
3
= cX1,n+1Y3 + 3δcX1,n+1Y2

+ (3δ2 + 2) cX1,n+1Y1 + (δ3 + 3δ) cX1,n+1 ,

c1⋯cn+1 (c2⋯cnc1⋯cn+1)
4
= cX1,n+1Y4 + (4δ) cX1,n+1Y3

+ (6δ2 + 3) cX1,n+1Y2 + (4δ3 + 8δ) cX1,n+1Y1

+ (δ4 + 6δ2 + 2) cX1,n+1 ,

and so on. As one can see, computations can quickly become quite cumbersome, wherein lies
much of the motivation for finding a diagrammatic representation that renders computation
of large products a manageable task.
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Chapter 5

Diagram algebras

The rest of this thesis is dedicated to the presentation of a diagram algebra that we conjecture
to be a faithful representation of TL(C̃n), for n even. We will be providing a correspondence
and significant evidence that our diagram algebra is very likely to be an accurate represen-
tation. However, we will only painting the big picture and providing a proof of concept at
this time.

5.1 Undecorated diagrams

To develop our diagram algebra, we first introduce undecorated diagrams. Let k be a non-
negative integer. We define a standard k-box to be a rectangle with 2k ticks, named nodes
which will be labeled as in Figure 5.1. The top of the rectangle will be called the north
face, and the bottom will be called the south face. At times, we will find convenience in
embedding the standard k-box in the plane so that the lower left corner is at the origin,
allowing us to locate each node i (respectively, i′) at the point (i,1) (respectively, (i,0)).

1 2 3

1′ 2′ 3′

k

k′

Figure 5.1: Standard k-box.

Now we define a concrete pseudo k-diagram consisting of a finite number of disjoint
planar curves, called edges, embedded in the standard k-box where each node of the box is
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the endpoint of exactly one edge, meeting the box transversely, and all other edges must be
closed (isotopic to circles) and disjoint from the box.

We now define an equivalence relation on the set of concrete pseudo k-diagrams. Two
concrete pseudo k-diagrams are (isotopically) equivalent if one concrete diagram may be
obtained from the other by isotopically deforming the edges such that every intermediate
diagram is also a concrete pseudo k-diagram. A pseudo k-diagram is defined to be the
equivalence class of all equivalent concrete pseudo k-diagrams. We denote the set of pseudo
k-diagrams by Tk(∅).

Example 5.1.1. In Figure 5.2, one will find an example of a concrete pseudo 5-diagram,
and an example of one that is not.

(a) A concrete pseudo 5-diagram (b) Not a concrete pseudo 5-diagram

Figure 5.2: Examples of diagrams.

When visually representing a pseudo k-diagram, an arbitrary representative will be chosen
from the continuum of equivalent concrete k-diagrams.

A closed curve occurring in a pseudo k-diagram is referred to as a loop edge, or loop.
Most diagram algebras eliminate loops through a process akin to scaling. We intend to
preserve the presence of some loops in our diagram algebra in order to obtain infinitely many
diagrams, hence our usage of the term pseudo. The appearance of ∅ when defining Tk(∅)

above indicates that the diagrams are undecorated. We will discuss decorated diagrams in
subsequent sections.

Let d be a diagram. If there is an edge E in d joining a node i (in the north face) to a
node j′ (in the south face), then we call E a propagating edge from i to j. If E joins i to i′,
we call E a vertical propagating edge. In the case an edge is not a loop or propagating edge,
it will be called a non-propagating edge.

If there is at least one propagating edge in a diagram d, we say d is dammed. Otherwise,
d is undammed (which can only happen when k is even). Furthermore, the number of non-
propagating edges in the north face is equal to the number of non-propagating edges in the
south face. Now let a ∶ Tk(∅)z→ Z+ ∪ {0} be defined via

a(d) = number of non-propagating edges in the north face of d.
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The diagram de, appearing in Figure 5.3, is the only diagram with no loops and a-value 0.
Note that k/2 is the upper bound of a(d), for any diagram d. If k is even and a(d) = d/2, d
is undammed, and if k is odd and a(d) = (k − 1)/2, then d has a single propagating edge.

de ∶= ⋯

Figure 5.3: The identity diagram.

Next we define an associative algebra using pseudo k-diagrams as a basis. Let R be a
commutative ring with unity. The associative algebra Pk(∅) over R is the free R-module
having Tk(∅) as a basis, with multiplication (referred to as diagram concatenation) defined
as follows. Let d1, d2 ∈ Tk(∅). Then the product d1d2 is the element of Tk(∅) obtained by
stacking d1 on top of d2 in the manner satisfying the coincidence of the nodes i′ of d1 and i
of d2, rescaling by a factor of 1/2, and then applying the appropriate translation to recover
a standard k-box.

Example 5.1.2. Figure 5.4 depicts the product of three basis diagrams from P5(∅).

=

Figure 5.4: Example of multiplication in P5(∅).

Now suppose R = Z[δ], the ring of polynomials in δ with integer coefficients. Let
DTL(An) be the associative Z[δ]-algebra equal to the quotient of Pn+1(∅) determined by
the relation depicted in Figure 5.5.
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= δ

Figure 5.5: Defining relation of DTL(An).

It is well-known that DTL(An) is the free Z[δ]-module with basis given by the elements
of Tn+1(∅) having no loops [17, 21]. The multiplication is inherited from the multiplication
on Pn+1(∅) except we multiply by a factor of δ for each resulting loop and then discard the
loop. We will refer to DTL(An) as the type A Temperley–Lieb diagram algebra.

Example 5.1.3. Figure 5.6 depicts the product of three basis diagrams from DTL(A4).
Note that this is the same product of diagrams as in Example 5.1.2, however, in this case
the three loops are replaced with the coefficient δ3.

= δ3

Figure 5.6: Example of multiplication in DTL(A4).

The next theorem describes the connection between TL(An) and DTL(An) shown in [17]
and [21].

Theorem 5.1.4. [17] As Z[δ]-algebras, the Temperley–Lieb algebra TL(An) is isomorphic to
DTL(An). Moreover, each loop-free diagram from Tn+1(∅) corresponds to a unique monomial
basis element of TL(An).

Since the monomial and canonical bases are equal in TL(An), the correspondence holds
true for the canonical basis in TL(An). Our goal is to establish a diagrammatic correspon-
dence with the canonical basis in TL(C̃n). However, in order to do this we need to introduce
a set of decorations and relations that can handle the bond strength of 4 that is seen in
Coxeter systems of type C̃n.
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5.2 Decorated diagrams

We will follow the development of decorated diagrams that has been presented in [2]. We will
now modify our diagrams by allowing the edges to carry symbols referred to as decorations.
We will use elements of the free monoids on the sets M = {●, ○,▲,△} and C = {●, ○,∎,◻} as
our decorations. The setM corresponds to the diagrammatic representation of the monomial
basis, {bw ∣ w ∈ FC(C̃n)}, and the set C will correspond to the conjectured diagrammatic
representation of the canonical basis, {cw ∣ w ∈ FC(C̃n)}. We will refer to elements of
{●,▲,∎} as closed decorations and elements of {○,△,◻} as open decorations. The free monoid
on M (respectively, C) is denoted M∗ (respectively, C∗). Suppose b = x1⋯xr is a finite
sequence of decorations in either M∗ or C∗. We call b a block of decorations and say b has
width r. For example, b = ● ● ◻ ○ ∎ ◻ is a block of width 6 from C∗.

We now introduce several restrictions on the decoration of the edges in our diagrams.
Let d be a fixed concrete pseudo k-diagram and let E be an edge of d.

(D0) If a(d) = 0, then E is undecorated.

Note that de is the unique diagram with a-value 0 and no loops; also it is undecorated.
Subject to some constraints, if a(d) > 0, we may adorn E with a finite sequence of blocks
of decorations b1, . . . ,bm such that the adjacency of blocks and decorations of each block is
preserved as we travel along E.

If E is a non-loop edge, we adopt the convention of placing the decorations in such a
manner that we may read off the sequence of decorations as we traverse E from north face
to south face if E is propagating, or from left to right if E is non-propagating. If E is a loop,
we may choose an arbitrary starting point and direction to read off the decorations.

If a(d) ≠ 0, then we also require the following:

(D1) All decorated edges can be deformed so as to take closed decorations to the left wall
of the diagram and open decorations to the right wall simultaneously without crossing
any other edges.

(D2) If E is non-propagating (a loop or otherwise), then we allow adjacent blocks on E to
be conjoined to form larger blocks.

(D3) If a(d) > 1 and E is propagating, we allow adjacent blocks to be conjoined to form
larger blocks, as in (D2).

(D4) If a(d) = 1 and E is propagating, then we allow E to be decorated subject to the
following restrictions.
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(a) All decorations occurring on propagating edges must have vertical position lower
(respectively, higher) than the vertical positions of decorations occurring on the
(unique) non-propagating edge in the north face (respectively, south face) of d.

(b) If b is a block of decorations occurring on E, then no other decorations occurring
on any other propagating edges may have vertical position in the range of vertical
positions that b occupies.

(c) If bi and bi+1 are two adjacent blocks occurring on E, then they may be conjoined
to form a larger block only if the previous requirements are not violated.

We define a concrete LR-decorated pseudo k-diagram to be any concrete k-diagram dec-
orated by blocks from M∗ or C∗ that satisfy the conditions presented in (D0) through (D4)

Requirement (D4) is nonstandard for diagram algebras and is required to ensure our
diagrammatic representation of type I products in TL(C̃n) is faithful.

Example 5.2.1. Some examples of concrete LR-decorated pseudo k-diagrams may be found
in Figure 5.7. Here are a few comments.

(a) The diagram in Figure 5.7(a) is a concrete LR-decorated pseudo 5-diagram with dec-
orations coming from M∗. This diagram has a-value greater than 1, meaning there is
no restriction on the vertical placement of the decorations, and the decorations on the
single propagating edge may be conjoined to form a block of width 4.

(b) The diagram in Figure 5.7(b) is another concrete LR-decorated pseudo 5-diagram with
decorations from M∗. However, this diagram has a-value 1, meaning there are re-
strictions on the vertical placement of decorations. We use horizontal dotted lines to
indicate that the decorations of the left-most propagating edge may not be conjoined
into a single block, and are 3 distinct blocks. Similarly, the decorations on the right-
most propagating edge form 2 distinct blocks that may not be conjoined to form a
single block.

(c) The diagram in Figure 5.7(c) is a concrete LR-decorated pseudo 6-diagram with max-
imal a-value of 3 and no propagating edges. This diagram is decorated with elements
of M∗, as well.

(d) The diagram in Figure 5.7(d) is similar to the diagram in Figure 5.7(c). The only
difference is that this diagram is decorated with elements of C∗.

Earlier, we mentioned that concrete pseudo k-diagrams have edges that may be deformed
while remaining isotopically equivalent. The only time equivalence is an issue is when a(d) =
1. In this case, we wish to preserve the relative vertical position of the blocks. We define two
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(a) (b)

(c) (d)

Figure 5.7: Examples of concrete LR-decorated pseudo diagrams.

concrete pseudo LR-decorated k-diagrams to beM-equivalent (respectively, C-equivalent) if
the decoration set isM (respectively, C) and we can isotopically deform one diagram into the
other such that any intermediate diagram is also a concrete LR-decorated pseudo k-diagram.
Note that we do allow decorations from the same maximal block to pass each other’s vertical
position (while maintaining adjacency).

We now define an LR-decorated pseudo k-diagram to be the equivalence class of M-
equivalent (respectively, C-equivalent) concrete LR-decorated pseudo k-diagrams. We will
denote the set of LR-decorated pseudo k-diagrams as TLRk (M) (respectively, TLRk (C)).

We define PLRk (M) (respectively, PLR
k (C)) as the free Z[δ]-module having the LR-

decorated pseudo k-diagrams TLRk (M) (respectively, TLRk (C)) as a basis. Multiplication
in PLRk (M) (respectively, PLRk (C)) is defined via basis elements d and d′, and then extend-
ing bilinearly, that is, to calculate d′d, concatenate d′ and d and conjoin adjacent blocks
while maintaining M-equivalence (respectively, C-equivalence). It turns out that PLRk (M)

(respectively, PLRk (C)) is a well-defined infinite dimensional associative Z[δ]-algebra. The
proof in the case of PLRk (M) appears in [2], and the proof may easily be adapted to the case
of PLRk (C).

In the next section, we define a quotient of PLRk (M) (respectively, PLRk (C)) having re-
lations determined by the application of local combinatorial rules on our diagrams in order
to create a diagrammatic representation of TL(C̃n) using the monomial basis. Decorations
coming from C will be abandoned until Section 5.4.

5.3 Monomial relations

Let R = Z[δ] and define VM to be the quotient of RM∗ by the relations

(a) ● ● = ▲,
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(b) ● ▲ = ▲ ● = 2 ●,

(c) ○ ○ = △, and

(d) ○ △ = △ ○ = 2 ○.

We refer to VM, which is associative and has a basis consisting of the identity and all
finite alternating products of open and closed decorations, as our decoration algebra on M.

We now impose some relations on the blocks of decorations coming fromM∗ in Figure 5.8.
Let P̂LRk (M) be the associative Z[δ]-algebra equal to the quotient of PLRk (M) defined by
the given relations. The relations found in Figure 5.9 are a consequence of the relations
presented in Figure 5.8.

=

(a)

= = 2

(b)

=

(c)

= = 2

(d)

= = = δ

(e)

Figure 5.8: Defining relations of P̂LRk (M).

= 2

(a)

= 2

(b)

Figure 5.9: Additional relations of P̂LRk (M).

Example 5.3.1. In Figure 5.10, one will find the multiplication of three diagrams in
P̂LRk (M), where no diagram involved has a-value of 1. In Figure 5.11, one will find multi-

plication of three diagrams in P̂LRk (M). However, each diagram involved in Figure 5.11 has
a-value of 1, exemplifying the use of the dotted line to preserve vertical placement of distinct
blocks.

53



= 2

Figure 5.10: Example of multiplication in P̂LR6 (M).

=

Figure 5.11: Another example of multiplication in P̂LR6 (M).

Define the diagrams d1, d2, . . . , dn+1 as seen in Figure 5.12, and call them simple diagrams.
Notice each of d1, d2, . . . , dn+1 is a basis element in P̂LRn+2(M). Define DTL(C̃n) as the Z[δ]-
algebra of P̂LRn+2(M) generated by the simple diagrams with multiplication inherited from
P̂LRn+2(M).

A complete description of admissible diagrams may be found in [2]. That is to say,
there exists a set of axioms that describes all diagrams that may be built using the simple
diagrams and the relations found in Figure 5.8. In [3], TL(C̃n) and DTL(C̃n) were shown to
be isomorphic as Z[δ]-algebras under the identification bi z→ di, where {bw ∣ w ∈ FC(C̃n)}
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d1 =

1 2 3 n + 2

⋯

⋮

di =

1 i − 1 i i + 1 i + 2 n + 2

⋯ ⋯

⋮

dn+1 =

1 n − 1 n n + 2

⋯

Figure 5.12: Simple diagrams.

is the monomial basis introduced in Section 3.2.

Theorem 5.3.2. Define θ ∶ TL(C̃n)→ DTL(C̃n) via θ(bi) = di. The map θ is an isomorphism
of TL(C̃n) and DTL(C̃n).

Note that if w = x1x2⋯xr ∈ W (C̃n) is a reduced product, then dx1dx2⋯dxr = dw. In the
following section we build a diagram algebra that we conjecture to be representative of the
canonical basis of TL(C̃n).

5.4 Canonical relations

We now change gears to work with decorations coming from C instead of M in order to
create a diagram algebra that we conjecture to be a faithful representation of TL(C̃n) in
terms of the canonical basis. The first step in this task is to introduce a set of relations on
the blocks of decorations from C∗.

Let R = Z[δ] and define VC to be the quotient of RC∗ by the relations

(a) ● ● = ∎ + e,
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(b) ● ∎ = ∎ ● = ●,

(c) ○ ○ = ◻ + e, and

(d) ○ ◻ = ◻ ○ = ○,

where e is the identity, which translates to a blank edge.
As in Section 5.3, we impose the relations found in Figure 5.13 upon the blocks of

decorations in C∗. Let P̂LRk (C) be the associative Z[δ]-algebra equal to the quotient of
PLRk (C) defined by the given relations. Consequently, we also have the relations found in

Figure 5.14. As in Section 5.3, we define D2TL(C̃n) as the Z[δ]-algebra of P̂LRn+2(C) generated
by the simple diagrams seen in Figure 5.12 with multiplication inherited by P̂LRn+2(C). Without
inspection one may miss the subtle difference between DTL(C̃n) and D2TL(C̃n), where
the latter is defined by the relations imposed on decorations from C. We conjecture that
D2TL(C̃n) ≅ DTL(C̃n) for n even.

= +

(a)

= =

(b)

= +

(c)

= =

(d)

= δ

(e)

= = = = 0

(f)

Figure 5.13: Defining relations of P̂LRk (C).

=

(a)

=

(b)

= + δ

(c)

Figure 5.14: Additional relations of P̂LRk (C).
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As in Chapter 4, we will define dx1dx2⋯dxr ∈ D2TL(C̃n) to be of type I when x1x2⋯xr ∈
W (C̃n) is reduced and of type I and of type II when x1x2⋯xr ∈W (C̃n) is reduced and of of
type II. Let’s have an example.

Example 5.4.1. Consider D2TL(C̃2). Then the type I product d1d2d3d2d1d2d3 ∈ D2TL(C̃n)
may be found in Figure 5.15(a). Also d1d2d3 (d2d1d2d3)

2
may be found in Figure 5.15(b),

and d1d2d3 (d2d1d2d3)
3

may be found in Figure 5.15(c).
Furthermore, we have d3 (d2d1d2d3)

2
in Figure 5.16(a) and d3 (d2d1d2d3)

3
in Figure 5.16(b).

These diagrams appear during the calculation of the previous set of diagrams, but was relo-
cated to draw attention to their similarities.

+ 3

(a)

+ 5 + 10

(b)

+ 7 + 21 + 35

(c)

Figure 5.15: Linear combinations of diagrams corresponding to type I products.

Example 5.4.2. Consider D2TL(C̃4). Let’s look at a few type II products.

(a) The computation of d1d3d5d2d4d1d3d5 is found in Figure 5.17. Since we are using the
simple diagrams from Section 5.3, we find that d1d3d5 = d135 by Theorem 5.3.2. Then
we find

d1d3d5d2d4d1d3d5 = ( + δ)d135.

(b) In fact, the computation of d1d3d5 (d2d4d1d3d5)
k

for k ∈ N is found in Figure 5.18.
Again, we find

d1d3d5 (d2d4d1d3d5)
k
= ( + δ)

k
d135.
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+ 4 + 3 + 3

(a)

+ 6 +15

+10 +10

(b)

Figure 5.16: Additional linear combinations of diagrams corresponding to type I products.

(c) Furthermore, if we consider D2TL(C̃n), where n is even, we find

d1d3⋯dn+1 (d2d4⋯dnd1d3⋯dn+1)
k
= ( + δ)

k
d13⋯(n+1)

Note that this does not quite line up with our type II products from Remark 4.3.6, so we
are not quite done yet.

= ( + δ)

Figure 5.17: Linear combinations of diagrams corresponding to type II products.
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( + δ)
k

Figure 5.18: Additional linear combinations of diagrams corresponding to type II products.

5.5 A diagrammatic correspondence

In this section we present evidence sufficient to indicate there should exist a faithful diagram-
matic representation of TL(C̃n) in terms of the c-basis, and thus an isomorphism between
D2TL(C̃n) and TL(C̃n), where the c-basis corresponds to some set of admissible diagrams
from D2TL(C̃n), where n is restricted to be even. Once we have the correspondence between
type I and type II elements, we ought to be able to begin the inductive process for showing
the correspondence holds across TL(C̃n). The full proof is left to subsequent studies. As
hinted in Chapter 4, we anticipate the case where n is odd to be simpler.

As in Example 5.4.1, there is a clear correspondence between the terms in the type I
products presented in Remark 4.1.5 and diagrams with a-value 1. We have depicted the
correspondence in Figure 5.19 when n = 2. In general, there are n − 2 propagating edges
inserted between the propagating edge that bears closed decorations and the propagating
edge that bears open decorations following the obvious pattern and carrying no decorations.
These propagating edges that extend our example to the arbitrary case are omitted for the
sake cleanliness in the argument.

A few comments are in order. First notice that the c-basis elements indexed by zR,2k+1
1,3

correspond to diagrams that have k instances of the decoration ∎, k instances of the decora-
tion ◻, and are equal when all of the decorations are removed. Similarly, we find the c-basis
elements indexed by zL,2k3,3 correspond to diagrams with k instances of ∎, k − 1 instances of
◻ (and one instance of the decoration ○ above and below), and are equal when are of the
decorations are removed.

Now we address the correspondence in type II products. When convenience demands
and there is no chance for confusion, we shall make the following replacement:

L = .

We now introduce Chebyshev polynomials of the second kind, which are defined to be the
elements of Z [L] given by P0 (L) = 1, P1(L) = L and

Pn(L) = LPn−1(L) − Pn−2(L),

59



czR,7
1,3
↔

czR,5
1,3
↔

czR,3
1,3
↔

czR,1
1,3
↔

czL,6
3,3
↔

czL,4
3,3
↔

czL,2
3,3
↔

c323 ↔

c3 ↔

Figure 5.19: Type I identifications for n = 2.

where n ≥ 2. Note that we have the following polynomials:

P2(L) = L
2 − 1;

P3(L) = L
3 − 2L;

P4(L) = L
4 − 3L2 + 1;

P5(L) = L
5 − 4L3 + 3L;

P6(L) = L
6 − 5L4 + 6L2;

etc.

The purpose of these polynomials will be to create a faithful correspondence between
certain diagrams in D2TL(C̃n) and terms arising from the computation of type II products
in the c-basis, which we encountered in Section 4.3.

The first step in identifying this correspondence is to collect our thoughts from Exam-
ple 5.4.2 where we found

d1d3⋯dn+1d2d4⋯dnd1d3⋯dn+1 = (L + δ)dX1,n+1

and
d1d3⋯dn+1 (d2d4⋯dnd1d3⋯dn+1)

k
= (L + δ)kdX1,n+1 .
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We conjecture that there is an isomorphism of algebras where the terms arising from a
type II product correspond to the diagram dX1,n+1 together with Pk(L) for some k. Specifi-
cally, cx1,n+1Yk ↔ Pk(L)dX1,n+1 . We have depicted the correspondence in the case when n = 4
in Figure 5.20. In general, there are n−4 non-propagating edges are added in each face of the
diagram that join nodes i and i+1 to extend our example to the case of arbitrary (but even)
n, and manipulate addition to form Chebyshev polynomials for our linear combinations of
type II diagrams.

cX1,5Yk ↔ Pk(L)

Figure 5.20: Type II identifications for n = 4.

We should have a few examples.

Example 5.5.1. Let n be even. Recalling Remark 4.1.1 and Example 4.3.5, we have the
following correspondence between elements of D2TL(C̃n) and TL(C̃n):

d1d3⋯dn+1 = dX1,n+1

= P0(L)dX1,n+1

↔ cX1,n+1

= c1c3⋯cn+1.

Recalling Example 4.3.5, we have:

d1d3⋯dn+1d2d4⋯dnd1d3⋯dn+1 = (L + δ)dX1,n+1

= (P1(L) + P0(L))dX1,n+1

= P1(L)dX1,n+1 + P0(L)dX1,n+1

↔ cX1,n+1Y1 + cX1,n+1

= c1c3⋯cn+1c2c4⋯cnc1c3⋯cn+1.
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Lastly, recalling Remark 4.3.6, we have:

d1d3⋯dn+1 (d2d4⋯dnd1d3⋯dn+1)
2
= (L + δ)2dX1,n+1

= (L2 + 2Lδ + δ2)dX1,n+1

= (L2 − 1 + 1 + 2δLδ + δ2)dX1,n+1

= ((L2 − 1) + 2δL + (δ2 + 1))dX1,n+1

= (P2(L) + 2δP1(L) + (δ2 + 1)P0(L))dX1,n+1

↔ cX1,n+1Y2 + 2δcX1,n+1Y1 + (δ2 + 1)cX1,n+1

= c1c3⋯cn+1 (c2c4⋯cnc1c3⋯cn+1)
2
.
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