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ABSTRACT

CONJUGACY CLASSES OF CYCLICALLY FULLY COMMUTATIVE
ELEMENTS IN COXETER GROUPS OF TYPE A

Brooke Fox

A fundamental result of Coxeter groups, known as Matsumoto’s the-

orem, states that any two reduced expressions of the same element differ

by a sequence of commutations and braid moves. If two elements have

expressions that are cyclic shifts of each other (as words), then they are

conjugate (as group elements). We say that an expression is cyclically re-

duced if every cyclic shift of it is reduced, and ask the following question,

where an affirmative answer would be a “cyclic version” of Matsumoto’s

theorem. Do two cyclically reduced expressions of conjugate elements dif-

fer by a sequence of braid relations and cyclic shifts? While the answer

is, in general, “no,” understanding when the answer is “yes” is a central

focus of a broad ongoing research project. It was recently shown to hold

for all Coxeter elements.

A Coxeter element is a special case of a fully commutative element,

which is any element with the property that any two reduced expressions

are equivalent by only commutations. In this thesis, we study the cycli-

cally fully commutative elements. These are the elements for which every

cyclic shift of any reduced expression is a reduced expression of a fully

commutative element. In this light, the cyclically fully commutative el-

ements are the “cyclic version” of the fully commutative elements. In

particular, the cyclic version of Matsumoto’s theorem for the cyclically
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fully commutative elements asks when two reduced expressions for conju-

gate elements are equivalent via only commutations and cyclic shifts.

In this thesis, we study the combinatorics of cyclically fully commu-

tative elements in Coxeter groups of type A as it relates to conjugacy. In

particular, we introduce the notion of cylindrical heaps and ring equiva-

lence in order to state our main result, which says that two cyclically fully

commutative elements of a Coxeter group of type A are conjugate if and

only if their corresponding cylindrical heaps are ring equivalent.
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Chapter 1

Preliminaries

1.1 Introduction

This thesis is organized as follows. After necessary background material on Coxeter
groups is presented in Section 1.2, we introduce the class of fully commutative el-
ements in Section 1.3. Then, in Section 1.4, we discuss a visual representation for
elements of Coxeter groups, called heaps. The cyclically fully commutative elements,
introduced in Section 2.2, are exactly those elements that are fully commutative
when written in a circle and can be thought of as a generalization of Coxeter ele-
ments. In Section 2.4, we explore the connection between Coxeter groups of type An
and the symmetric group Sn+1. We also state a conjecture about the permutations
corresponding of cyclically fully commutative elements (Conjecture 2.4.9). Finally, in
Section 3.1, we introduce the notion of cylindrical heaps and ring equivalence in order
to state the main result of this thesis (Theorem 3.2.1), which says that two cyclically
fully commutative elements of a Coxeter group of type An are conjugate if and only
if their corresponding cylindrical heaps are ring equivalent. The last section states
and proves several lemmas used to prove the main result.

1.2 Coxeter groups

A Coxeter system is a pair (W,S) consisting of a finite set S of generating involutions
and a group W , called a Coxeter group, with presentation

W = 〈S | (st)m(s,t) = e for m(s, t) <∞〉,

where e is the identity, m(s, t) = 1 if and only if s = t, and m(s, t) = m(t, s). It
follows that the elements of S are distinct as group elements and that m(s, t) is the
order of st [5]. We call m(s, t) the bond strength of s and t. Coxeter groups are
generalizations of reflection groups. Each generator s ∈ S can be thought of as a
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reflection. Recall that the composition of two reflections is a rotation by twice the
angle between the corresponding hyperplanes. So, if s, t ∈ S, we can think of st as a
rotation, where m(s, t) is the order of the rotation.

Since elements of S have order two, the relation (st)m(s,t) = e can be written as

sts · · ·︸ ︷︷ ︸
m(s,t)

= tst · · ·︸ ︷︷ ︸
m(s,t)

(1.1)

with m(s, t) ≥ 2 factors. If m(s, t) = 2, then st = ts is called a commutation
relation since s and t commute. If m(s, t) ≥ 3, then the relation in (1.1) is called a
braid relation. We will write 〈st〉m(s,t) to denote the word sts · · · consisting of m(s, t)
factors. Replacing 〈st〉m(s,t) with 〈ts〉m(s,t) will be referred to as a commutation if
m(s, t) = 2 and a braid move if m(s, t) ≥ 3.

We can represent the Coxeter system (W,S) with a unique Coxeter graph Γ having

(a) vertex set S = {s1, . . . , sn} and

(b) edges {si, sj} for each m(si, sj) ≥ 3.

Each edge {si, sj} is labeled with its corresponding bond strength m(si, sj). Since
bond strength 3 is the most common, we typically omit the labels of 3 on those edges.

There is a one-to-one correspondence between Coxeter systems and Coxeter graphs.
Given a Coxeter graph Γ, we can construct the corresponding Coxeter system (W,S).
In this case, we say that (W,S), or just W , is of type Γ. If (W,S) is of type Γ,
for emphasis, we may write (W,S) as (W (Γ), S(Γ)). Note that generators si and
sj are connected by an edge in the Coxeter graph Γ if and only if si and sj do not
commute [5]. Also, if Γ is connected, then we say that Γ, or W (Γ), is irreducible.

The Coxeter system of type An is given by the Coxeter graph in Figure 1.2(a).
We can construct (W (An), S(An)) having the generating set S(An) = {s1, s2, . . . , sn}
and defining relations

(a) sisi = e for all i;

(b) sisj = sjsi when |i− j| > 1;

(c) sisjsi = sjsisj when |i− j| = 1.

The Coxeter group W (An) is isomorphic to the symmetric group Sn+1 under the
mapping that sends si to the adjacent transposition (i i + 1). This thesis focuses
specifically on Coxeter systems of type An.

Definition 1.2.1. Let S∗ denote the free monoid over S. If a word w = sx1sx2 · · · sxm ∈
S∗ is equal to w when considered as an element of W , we say that w is an expression
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for w. (Expressions will be written in sans serif font for clarity.) Furthermore, if m is
minimal among all possible expressions for w, we say that w is a reduced expression
for w, and we call m the length of w, denoted `(w).

Each element w ∈ W can have several different reduced expressions that represent
it. The following theorem is called Matsumoto’s Theorem.

Theorem 1.2.2 (Matsumoto, [2]). In a Coxeter group W , any two reduced expres-
sions for the same group element differ by a sequence of commutations and braid
moves.

It follows from Matsumoto’s Theorem that all reduced expressions for w ∈ W
have the same number of generators appearing in the expression. Let w ∈ W and
let w be a reduced expression for w. Then the support of w, denoted supp(w), is the
set of generators that appear in w. Also from Matsumoto’s Theorem we have that
s appears in a reduced expression for w if and only if s appears in every reduced
expression for w, so we can define the support of a group element. Define supp(w) to
be the set of generators appearing in any reduced expression for w. If supp(w) = S,
we say that w has full support.

Given a reduced expression w for w ∈ W , we define a subexpression of w to be any
subsequence of w. We will refer to a subexpression consisting of a string of consecutive
symbols from w as a subword of w.

Example 1.2.3. Let w ∈ W (A6) and let w = s1s2s4s5s2s6s5 be an expression for w.
Then we have

s1s2s4s5s2s6s5 = s1s4s2s5s2s6s5 = s1s4s5s2s2s6s5 = s1s4s5s6s5,

where the pink subword denotes applying a commutation to the corresponding gen-
erators to obtain the next expression and the green subword denotes canceling two
adjacent occurrences of the same generator. So, w is not reduced. It turns out that
s1s4s5s6s5 is a reduced expression for w and supp(w) = {s1, s2, s4, s5, s6}. Hence
`(w) = 5.

Example 1.2.4. Let W be the Coxeter group of type A4, and let w ∈ W have
reduced expression w = s1s2s3s4s2. Then the set of all the reduced expressions for w
is

{s1s2s3s4s2, s1s2s3s2s4, s1s3s2s3s4, s3s1s2s3s4},

where the pink subword denotes applying a commutation and the blue subword de-
notes applying a braid relation to get to the next reduced expression. Then `(w) = 5
and w has full support.
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Definition 1.2.5. A Coxeter element is an element w ∈ W for which every generator
appears exactly once in each reduced expression for w.

Note that supp(w) = S for a Coxeter element w. The set of Coxeter elements of
W is denoted by C(W ).

Example 1.2.6. Consider the Coxeter group of type A4. Let w1, w2, w3, w4 ∈ W (A4)
have reduced expressions s1s2s4s3, s2s1s3s4, s2s4, and s1s2s3s4s1s2, respectively. Then
w1 and w2 are Coxeter elements because each has exactly one occurrence of each
generator s1, s2, s3, s4 in its reduced expression. On the other hand, w3 is not a
Coxeter element because it does not have full support. Also, w4 is not a Coxeter
element because it has generators repeated; there are two occurrences each of s1 and
s2 in its reduced expression.

Example 1.2.7. Let W be the Coxeter group of type A4. Then the Coxeter elements
of W and their corresponding reduced expressions are shown in Figure 1.1, where
each column contains the reduced expressions for a single Coxeter element. There are
4! = 24 reduced expressions for Coxeter elements in W , but there are only 8 Coxeter
elements because some reduced expressions determine the same group element by
commutation.

s1s2s3s4 s4s3s2s1 s1s2s4s3 s2s1s3s4 s3s4s2s1 s4s3s1s2 s1s3s2s4 s2s1s4s3
s1s4s2s3 s2s3s1s4 s3s2s4s1 s4s1s3s2 s3s1s2s4 s2s4s1s3
s4s1s2s3 s2s3s4s1 s3s2s1s4 s1s4s3s2 s1s3s4s2 s2s4s3s1

s3s1s4s2 s4s2s1s3
s3s4s1s2 s4s2s3s1

Figure 1.1: Coxeter elements and their reduced expressions in W (A4).

1.3 Fully commutative elements

Let (W,S) be a Coxeter system of type Γ and let w ∈ W . Following [8], we define
a relation ∼ on the set of reduced expressions for w. Let w and w′ be two reduced
expressions for w. We define w ∼ w′ if we can obtain w′ from w by applying a single
commutation move of the form sisj 7−→ sjsi, where m(si, sj) = 2. Now, define the
equivalence relation≈ by taking the reflexive transitive closure of∼. Each equivalence
class under ≈ is called a commutation class. Two reduced expressions are said to be
commutation equivalent if they are in the same commutation class.
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Example 1.3.1. Let W be the Coxeter group of type A5 and consider the reduced ex-
pressions w = s1s3s2s5s4 and w′ = s5s1s3s4s2. Then w and w′ are reduced expressions
for the same element w ∈ W and are commutation equivalent since

s1s3s2s5s4 = s1s3s5s2s4 = s1s3s5s4s2 = s1s5s3s4s2 = s5s1s3s4s2,

where the pink subwords denote applying a commutation to the corresponding gen-
erators to obtain the next expression.

Example 1.3.2. Let W be the Coxeter group of type A4 and let w ∈ W have
reduced expressions w = s1s2s3s2s4 and w′ = s1s3s2s3s4. Then it is easily seen that w
and w′ are not commutation equivalent, so w has more than one commutation class.
Specifically, the commutation classes are

{s1s2s3s2s4, s1s2s3s4s2} and {s1s3s2s3s4, s3s1s2s3s4}.

Example 1.3.3. Let W be the Coxeter group of type A3 and let w ∈ W have reduced
expression w = s2s1s3s2. Then, by applying the commutation s1s3 7−→ s3s1, w

′ =
s2s3s1s2 is also a reduced expression for w. There are no other reduced expressions
for w because we cannot apply any other commutations or braid moves. Therefore
there is exactly one commutation class—namely, {s2s1s3s2, s2s3s1s2}.

If w has exactly one commutation class, then we say that w is fully commutative,
or just FC. The set of all fully commutative elements of W is denoted by FC(Γ),
where Γ is the corresponding Coxeter graph, or FC(W ). For consistency, we say that
a reduced expression w is FC if it is a reduced expression for some w ∈ FC(Γ). Note
that the element in Example 1.3.2 is not FC since there are two commutation classes,
while the element in Example 1.3.3 is FC since there is only one commutation class.

Given some w ∈ FC(Γ) and a starting reduced expression for w, observe that the
definition of fully commutative states that one only needs to perform commutations
to obtain all the reduced expression for w, but the following theorem states that,
when w is FC, performing commutations is the only possible way to obtain another
reduced expression for w.

Theorem 1.3.4 (Stembridge, [8]). An element w ∈ W is FC if and only if no
reduced expression for w contains 〈si, sj〉m(si,sj) as a subword for all si 6= sj when
m(si, sj) ≥ 3.

This theorem states that an element is FC if and only if there is no opportunity
to apply a braid move. Notice that Coxeter elements are FC since there will never be
opportunity to apply braid moves as, by definition, there is exactly one appearance
of each generator.
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Example 1.3.5. Let W be the Coxeter group of type A5. Let w ∈ W have reduced
expression w = s1s4s3s5s2s1s3s4. Then we have

s1s4s3s5s2s1s3s4 = s1s4s5s3s2s1s3s4 = s1s4s5s3s2s3s1s4,

where the pink subword denotes applying a commutation to the corresponding gen-
erators to obtain the next expression. So, w is not FC because there is opportunity
to apply a braid move, highlighted in blue.

Stembridge classified the irreducible Coxeter groups that contain only finitely
many fully commutative elements, called the FC-finite Coxeter groups. This thesis
is mainly concerned with W (An), which is a finite group, so it has finitely many
FC elements. However, there exist infinite Coxeter groups that contain only finitely
many FC elements. For example, Coxeter groups of type En with n ≥ 9 as shown in
Figure 1.2(e) are infinite, but they have only finitely many FC elements.

Theorem 1.3.6 (Stembridge, [8]). The FC-finite irreducible Coxeter groups are of
type An with n ≥ 1, Bn with n ≥ 2, Dn with n ≥ 4, En with n ≥ 6, Fn with n ≥ 4,
Hn with n ≥ 3, and I2(m) with 5 ≤ m < ∞. The corresponding Coxeter graphs are
shown in Figure 1.2.

· · ·
(a) An

4
· · ·

(b) Bn

m

(c) I2(m)
· · ·

(d) Dn

· · ·
(e) En

4
· · ·

(f) Fn

5
· · ·

(g) Hn

Figure 1.2: Coxeter graphs corresponding to the irreducible FC-finite Coxeter groups.

It is well known that the number of FC elements in W (An−1) is given by the
Catalan number Cn = 1

n+1

(
2n
n

)
.
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1.4 Heaps

We can now discuss another representation of elements of Coxeter groups. Each
reduced expression is associated with a labeled partially ordered set called a heap.
We follow the development in [4] and [8].

Definition 1.4.1. Let (W,S) be a Coxeter system. Suppose w = sx1sx2 · · · sxk is a
reduced expression for w ∈ W , and as in [8], define a partial ordering ≺ on the indices
{1, . . . , k} by the transitive closure of the relation j ≺ i if i < j and sxi and sxj do
not commute. In particular, j ≺ i if i < j and sxi = sxj by transitivity and the fact
that w is reduced. This partial order with i labeled sxi is called the heap of w.

Note that for simplicity, we are omitting the labels of the underlying poset but
retaining the labels of the corresponding generators.

Example 1.4.2. Let w = s2s1s3s2s4s5 be a reduced expression for w ∈ W (A5). We
see that w is indexed by {1, 2, 3, 4, 5, 6} because `(w) = 6. We see that 4 ≺ 3 since
3 < 4 and s4 and s3 do not commute. The labeled Hasse diagram for the heap poset
of w is shown in Figure 1.3.

s2

s1 s3

s2
s4

s5

Figure 1.3: The labeled Hasse diagram for the heap poset of w = s2s1s3s2s4s5.

Let w be a fixed reduced expression for w ∈ W (An). As in [1] and [4], we represent
a heap for w as a set of lattice points embedded in {1, . . . , n}×N. To do so, we assign
(not necessarily unique) coordinates (x, y) ∈ {1, . . . , n} × N to each entry of the
labeled Hasse diagram for the heap of w in such a way that

(a) An entry with coordinates (x, y) is labeled si (or i) in the heap if and only
if x = i;

(b) An entry with coordinates (x, y) is greater than an entry with coordinates
(x′, y′) in the heap if and only if y > y′.
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It follows from the definition that there is an edge in the Hasse diagram from (x, y)
to (x′, y′) if and only if x = x′ ± 1, y > y′, and there are no entries (x′′, y′′) such
that x′′ ∈ {x, x′} and y′ < y′′ < y. This implies that we can completely reconstruct
the edges of the Hasse diagram and the corresponding heap poset from a lattice
point representation. The lattice point representation of a heap allows us to visualize
potentially cumbersome arguments. Note that our heaps are upside-down versions of
the heaps that appear in [1] and several other papers. That is, in this thesis entries
on top of a heap correspond to generators occurring to the left, as opposed to the
right, in the corresponding reduced expression. One can form similar lattice point
representations for heaps when Γ is a straight line Coxeter graph.

Let w = sx1 · · · sxn be any reduced expression for w ∈ W (An). We let H(w) denote
a lattice representation of the heap poset in {1, . . . , n}×N described in the paragraph
above. There are many possible coordinate assignments for the entries of H(w), yet
the x-coordinates for each entry will be fixed. If sxi and sxj are adjacent generators in
the Coxeter graph with i < j, then we must place the point labeled by sxi at a level
that is above the level of the point labeled by sxj . In particular, two entries labeled
by the same generator may only differ by the amount of vertical space between them
while maintaining their relative vertical position to adjacent entries in the heap.

Because generators that are not adjacent in the Coxeter graph commute, points
whose x-coordinates differ by more than one can slide past each other or land at
the same level. To visualize the labeled heap poset of a lattice representation we
will enclose each entry of the heap in a block in such a way that if one entry covers
another, the blocks overlap halfway.

Remark 1.4.3. It follows from Proposition 2.2 in [8] that heaps are well-defined up
to commutation class. That is, if w and w′ are two reduced expressions for w ∈ W
that are in the same commutation class, then the labeled heaps of w and w′ are equal.
In particular, if w is FC, then it has a single commutativity class, and so there is a
unique heap associated to w. In this case, if w is FC, then we may write H(w) to
denote the heap of any reduced expression for w.

There are potentially many different ways to represent a heap, each differing by
the vertical placement of blocks. For example, we can place blocks in vertical positions
that are as high as possible, as low as possible, or some combination of high/low. In
this thesis, we choose what we view to be the best representation of the heap for each
example.

Example 1.4.4. Let W be the Coxeter group of type A5 and w = s1s2s3s1s2s4s5 be
a reduced expression for w ∈ FC(W ). We will construct one possible lattice point
representation for H(w). Starting from the right hand side, the first generator is s5,
so we place a block, labeled with a 5, in position (5, 1). Observe that the x-coordinate
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is forced to be 5 since the block corresponds to the generator s5, but we have a choice
for the y-coordinate. We choose to place it as low as possible to get

s1 s2 s3 s4 s5

5

.

Now, moving right to left, the next generator is s4, so, similarly, we place a block,
labeled with a 4, in position (4, 2). The x-coordinate must be 4, and we must place
it at y ≥ 2 because s4 and s5 do not commute, and so the s4 block will be on a level
above s5, overlapping it halfway. We choose to place it as low as possible to get

s1 s2 s3 s4 s5

5

4
.

The next two generators, moving to the left, are s2 and s1. Since s2 and s4 commute,
we place the corresponding blocks on the same level as each other (or with the same
y-coordinate). We could have placed the s2 block lower in the heap since there is
nothing blocking it, but we choose to place it on the same level as the s4 block
because they commute. Since the s4 block has 2 as its y-coordinate, we place the s2
block in position (2, 2). Since s2 and s1 do not commute, we must place the s1 block
above the s2 block. We choose to place the s1 block in position (1, 3). We get

s1 s2 s3 s4 s5

5

42

1

.
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Continuing to place blocks in the same manner, a heap representation that corre-
sponds to w is

s1 s2 s3 s4 s5

5

42

1 3

2

1

.

Conversely, given a heap, we can write an expression for the group element. By
starting on the top and moving left to right and down, we write the corresponding
generators. We get an expression that is commutation equivalent to any expression
to which the heap corresponds.

Example 1.4.5. Given the heap in Figure 1.4, we obtain the reduced expression
s2s3s5s4, which is commutation equivalent to s2s5s3s4 and s5s2s3s4, all of which
yield the same heap. In fact, all reduced expressions yield the same heap since this
particular element is FC.

5

4

2

3

Figure 1.4: The heap for an FC element.

Example 1.4.6. We return to Example 1.4.4. Note that w = s1s2s3s1s2s4s5 is not
fully commutative because there is opportunity to apply a braid relation. We have

s1s2s3s1s2s4s5 = s1s2s1s3s2s4s5 = s2s1s2s3s2s4s5, (1.2)

10



where the pink subword denotes applying a commutation to obtain the next expression
and the blue subword denotes applying a braid relation to obtain the next expression.
Since w is not FC, we can represent w with a different heap using the last reduced
expression s2s1s2s3s2s4s5 in (1.2). We get the heap shown in Figure 1.5 as another
representation of w. Note that we can see the braid relation s2s1s2 = s1s2s1 in the
heap, highlighted in blue, that we applied in (1.2).

5

42

1

3

2

2

Figure 1.5: A second heap for the element in Example 1.4.4.

Definition 1.4.7. Let w = sx1 · · · sxn be a reduced expression for w ∈ W . We define
a heap H ′ to be a subheap of H(w) if H ′ = H(w′), where w′ = sy1sy2 · · · syk is a
subexpression of w. We emphasize that the subexpression need not be a subword.

We say that a subposet Q of a poset P is convex if y ∈ Q whenever x < y < z
in P and x, z ∈ Q. We will refer to a subheap as a convex subheap if the underlying
subposet is convex.

Example 1.4.8. Let w ∈ W (A6) have reduced expression w = s2s3s5s4s6s5. Since
there is no opportunity to apply a braid relation in any reduced expression for w, w
is FC, and so there is a unique heap. The heap H(w) is shown in Figure 1.6. Notice
that we chose to place all the blocks in this heap as low as possible.

11



5

64

53

2

Figure 1.6: The heap of an FC element of W (A6).

Now, let w′ = s5s4s5 be the subexpression of w that results from picking the
third, fourth, and last generators of w, highlighted in blue. Then H(w′) is shown in
Figure 1.7(a) and is a subheap of H(w), but H(w′) is not convex since there is a block
in H(w) corresponding to the generator s6 that occurs between the two occurrences
of s5 but does not have a block representing it in H(w′). However, if we include the
generator s6, we get w′′ = s5s4s6s5, and H(w′′) is a convex subheap of H(w), as shown
in Figure 1.7(b).

5

4

5

(a)

5

4

5

6

(b)

Figure 1.7: Non-convex and convex subheaps of the heap in Figure 1.6.

Notice that if we remove the block labeled by 6 from the original heap, then the
heap in Figure 1.7(a) is a convex subheap of H(w).

From this point on, if there will be no confusion, we will not specify the exact
subexpression from which a subheap arises. The following proposition follows from
the proof of Proposition 3.3 in [8].
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Proposition 1.4.9. Let w ∈ FC(W ). Then H ′ is a convex subheap of H(w) if and
only if H ′ is the heap for some subword of some reduced expression for w.

The following proposition follows from Lemma 2.4.5 in [4]. It will help us identify
when a heap corresponds to a fully commutative element in W (An).

Proposition 1.4.10. Let w ∈ FC(An). Then H(w) cannot contain either of the

convex subheaps shown in Figure 1.8, where 1 ≤ i ≤ n − 1 and is used to

emphasize the absence of a block in the corresponding position in H(w).

i+ 1

i

i+ 1

(a)

i

i+ 1

i

(b)

Figure 1.8: The convex subheaps not contained in heaps of FC elements.

The following lemma will become useful in proofs in later sections.

Lemma 1.4.11. If m(si, sj) = 3, then sisjsisj = sjsi.

Proof. Consider the expression sisjsisj. Applying a braid relation to the first three
generators and simplifying, we get sisjsisj = sjsisjsj = sjsi.

Recall that we defined heaps for reduced expressions. However, it will be useful for
us to extend the stacked blocks representation of a heap to non-reduced expressions,
which we do in the obvious way. If w and w′ are two expressions, not necessarily
reduced, for w ∈ W , then we will write H(w) ≡ H(w′).

Using this idea, we can write Lemma 1.4.11 in terms of heaps. If m(si, sj) = 3,
then we have the equivalent heaps shown in Figure 1.9.
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i

j

i

j

≡
j

i

(a)

j

i

j

i

≡
i

j

(b)

Figure 1.9: Lemma 1.4.11 in terms of heaps.

Let w ∈ W (An) with expression w. If sisjsisj is a subword of w with m(si, sj) = 3,
then we refer to sisjsisj as an extra long sisj-chain.

Remark 1.4.12. From now on, for brevity, we may write i in place of the generator
si. For example, we may write 123 in place of s1s2s3.
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Chapter 2

Cyclically fully commutative
elements

2.1 Cyclically reduced elements

Recall that s−1 = s for all s ∈ S, so sws−1 = sws. Given a word w = sx1sx2 · · · sxk
for w ∈ W , a cyclic shift of w is defined to be the natural expression that arises by
conjugating w by sx1 . That is,

sx1sx2 · · · sxk 7−→ sx2 · · · sxksx1

since sx1(sx1sx2 · · · sxk)sx1 = sx2 · · · sxksx1 .

Definition 2.1.1. Let (W,S) be a Coxeter system and let w be a reduced expression
for some w ∈ W . If every cyclic shift of w is a reduced expression for some element
in W , then we say that w is cyclically reduced. A group element w ∈ W is cyclically
reduced if every reduced expression for w is cyclically reduced.

If w is cyclically reduced, we can write every reduced expression for w in a circle
without creating any collapse in length.

Example 2.1.2. We now consider a couple of examples.

(a) Consider the Coxeter group of typeA5. Let w ∈ W have reduced expression
w = 31245. The cyclic version of w is shown in Figure 2.1. In this case,
w is clearly cyclically reduced since there are no repeat generators. That
is, we never have two adjacent occurrences of the same generator after
commutations or braid moves.

15



w

3

1

24

5

Figure 2.1: Cyclically reduced group element of W (A4) written in a circle.

(b) Consider the Coxeter group of typeA4. Let w ∈ W have reduced expression
w = 342132. Then w is not cyclically reduced, as shown in Figure 2.2.

w

3
4

2
1

3

2

= w

2
4

2
1

2

3

= w

2
2

4
1

2

3

= w

3

4

1

2

Figure 2.2: Not cyclically reduced group element of W (A4) written in a circle

Now it is natural to ask the question: Do two cyclically reduced expressions for
conjugate group elements differ by a sequence of commutations, braid moves, and
cyclic shifts?

Unfortunately the answer is no in general, but it is often true. One of the goals
of the authors of [2] is to understand when the answer is yes. This motivates the
following definition.

Definition 2.1.3. Let W be a Coxeter group. We say that a conjugacy class C
satisfies the cyclic version of Matsumoto’s Theorem, or CVMT, if any two cyclically
reduced expressions of elements in C differ by commutations, braid moves, and cyclic
shifts.

We can easily find an example where the CVMT fails.
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Example 2.1.4. Let W be the Coxeter group of type A2. Then 1 and 2 (or any
two distinct generators in W (An)) are conjugate since (12)1(21) = 12121 = 21221 =
211 = 2, but 1 and 2 clearly do not differ by a sequence of commutations, braid
moves, and cyclic shifts.

It is well known that if si ∈ S, then `(siw) = `(w) ± 1, and so `(wk) ≤ k · `(w).
If equality holds for all k ∈ N, we say that w is logarithmic. If every connected
component of Γsupp(w) (that is, the subgraph of Γ induced by the generators which
appear in w) describes an infinite Coxeter group, then we say that w is torsion-free.

Proposition 2.1.5 (Boothby, et al., [2]). Let W be a Coxeter group. If w ∈ W is
logarithmic, then w is cyclically reduced and torsion-free.

It follows from a result in [6] together with the fact that Coxeter elements are
trivially cyclically reduced that the converse of Proposition 2.1.5 holds for Coxeter
elements.

Theorem 2.1.6 (Speyer, [6]). In any Coxeter group, a Coxeter element is logarithmic
if and only if it is torsion-free.

The proof of Theorem 2.1.6 is combinatorial and relies on a natural bijection
between the set C(W ) of Coxeter elements and the set Acyc(Γ) of acyclic orientations
of the Coxeter graph. Specifically, if c ∈ C(W ), let (Γ, c) denote the digraph where,
if m(si, sj) ≥ 3, the edge {si, sj} in the Coxeter graph Γ is oriented as (si, sj) if
si appears before sj in c. The vertex sxi is a source (respectively, sink) of (Γ, c)
if and only if sxi is initial (respectively, terminal) in some reduced expression for
c. Conjugating a Coxeter element c = sx1 · · · sxn by sx1 cyclically shifts the word
sx1 · · · sxn to sx2 · · · sxnsx1 since

sx1(sx1sx2 · · · sxn)sx1 = sx2 · · · sxnsx1 , (2.1)

and, on the level of acyclic orientations, this corresponds to converting the source
vertex sx1 of (Γ, c) into a sink, which takes the orientation (Γ, c) to (Γ, sx1csx1). This
generates an equivalence relation ∼κ on Acyc(Γ) and on C(W ). Two acyclic orienta-
tions (Γ, c) and (Γ, c′) are κ-equivalent if and only if there is a sequence x1, . . . , xk such
that c′ = sxk · · · sx1csx1 · · · sxk and sxi+1

is a source vertex of (Γ, sxi · · · sx1csx1 · · · sxi)
for each i = 1, . . . , k − 1.

Thus, two Coxeter elements c, c′ ∈ C(W ) are κ-equivalent if they differ by a
sequence of length-preserving conjugations. That is, c ∼κ c′ if they are conjugate by
sx1 · · · sxk such that

`(c) = `(sxi · · · sx1csx1 · · · sxi)

holds for each i = 1, . . . , k.
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Performing a cyclic shift of a reduced expression of an arbitrary element w ∈ W
yields an element that is conjugate to w, but an element conjugate to w is not
necessarily a cyclic shift of w. The following result by H. Eriksson and K. Eriksson
shows that conjugation and cyclic shifts are the same for Coxeter elements.

Theorem 2.1.7 (Eriksson–Eriksson, [3]). Let W be a Coxeter group and let c, c′ ∈
C(W ). Then c and c′ are conjugate if and only if c and c′ are κ-equivalent.

2.2 Cyclically fully commutative elements

Note that the Erikssons’ result is the CVMT applied to Coxeter elements. Despite
the fact that the CVMT does not hold in general, we wish to gain understanding
about when it does.

The proof of Theorem 2.1.7 depends on torsion-free Coxeter elements being loga-
rithmic, and the proof of this involves combinatorial properties of the acyclic orienta-
tion construction and source-to-sink equivalence relation. Thus, we are motivated to
extend these properties to a larger class of elements. In fact, the acyclic orientation
construction above generalizes to the FC elements. If w ∈ FC(W ), then (Γ, w) is the
graph whose vertices are the disjoint union of generators in any reduced expression
of w, and a directed edge is present for each pair of noncommuting generators, with
the orientation denoting which comes first in w. Since w ∈ FC(W ), i.e., w has no
opportunity for braid moves, the graph (Γ, w) is well-defined. Though the acyclic
orientation construction extends from C(W ) to FC(W ), the source-to-sink operation
does not because a cyclic shift of a reduced expression for an FC element need not
be FC.

Example 2.2.1. Let w ∈ W (A4) have reduced expression w = 213243. Then w is
FC because there is no opportunity to apply a braid move in any reduced expression
for w, but a cyclic shift of w is commutation equivalent to a word containing a blue
〈23〉3 subword since

213243
27−→ 132432 = 134232

after applying a commutation to the pink subword, where
i7−→ indicates a cyclic shift

by i.

The previous example motivates the following definition.

Definition 2.2.2. An element w ∈ W is cyclically fully commutative, or CFC, if
every cyclic shift of every reduced expression for w is a reduced expression for an FC
element.
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We denote the set of CFC elements of W by CFC(Γ), where Γ is the Coxeter graph
corresponding to W , or CFC(W ). CFC elements are exactly the elements whose
reduced expressions, when written in a circle, avoid 〈s, t〉m(s,t) subwords for m(s, t) ≥
3, and hence they are the elements for which the source-to-sink operation extends in
a well-defined manner. The remainder of this thesis considers CFC elements.

Example 2.2.3. Let W be the Coxeter group of type A4 and let w, y ∈ W have
reduced expressions w = 1243 and y = 21324, respectively. Then both w and y are
FC, but, when we write each reduced expression in a circle, we have the diagrams
shown in Figure 2.3, so w is CFC because there are no opportunities for braid moves
or collapses created in the circle, but y is not CFC since the two adjacent occurrences
of 2 collapse after commuting 2 and 4.

w

1

2

4

3

(a)

y

2

1

2 3

4
= y

4

1

2 3

2
= y

4

13

(b)

Figure 2.3: Two FC elements of W (A4) written in a circle.

Remark 2.2.4. Coxeter elements are CFC since Coxeter elements are FC and any
cyclic shift of a Coxeter element is still a Coxeter element.

Proposition 2.2.5. Elements corresponding to subexpressions of Coxeter elements
are CFC.
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Proof. Let (W,S) be a Coxeter system and let w ∈ C(W ) with reduced expression
w. Then w is FC. Let w′ be a subexpression of w. Generators from S appear at most
once in w′, so w′ is reduced and FC, as well. Hence every cyclic shift of w′ has at
most one appearance of each generator, so no cyclic shift of w′ will have 〈st〉m(s,t) as
a subword for all s, t ∈ supp(w′). Thus, the group element corresponding to w′ is
CFC.

The following classification of CFC elements in Coxeter groups of type An is
Proposition 5.4 in [2].

Proposition 2.2.6 (Boothby, et al., [2]). Let w ∈ W (An). Then w is CFC if and
only if each generator in supp(w) appears exactly once.

In other words, the CFC elements in W (An) are precisely the elements that cor-
respond to reduced subexpressions of the Coxeter elements.

Example 2.2.7. Let W be the Coxeter group of type A3. The set of CFC elements
of W is

CFC(A3) = {e, 1, 2, 3, 13, 12, 21, 23, 32, 123, 321, 132, 231}.

2.3 Cylindrical heaps

Let w ∈ W (An) have reduced expression w and suppose w is commutation equivalent
to a reduced expression that begins with si. Then a block labeled by i occurs at the
top of the heap H(w). A cyclic shift of H(w) with respect to i is the heap that results
from removing the block labeled by i from the top of the heap and appending it to
the bottom. In other words, if w is commutation equivalent to siu, then a cyclic shift
of H(w) with respect to i is the heap H(usi). Note that H(usi) may not be the heap
for a reduced expression. However, since CFC(An) ⊆ FC(An), any w ∈ CFC(An) has
a unique heap and cyclic shifts of reduced expressions of CFC elements are reduced,
so if w is CFC, then H(usi) is the unique heap obtained by performing a cyclic shift
on w.

Consider the equivalence relation ≈κ generated by cyclic shifts of heaps. It is clear
that w is CFC if and only if all heaps in the equivalence class for H(w) are heaps for
reduced expressions of FC elements. Let w,w′ ∈ CFC(An). Then H(w) and H(w′)
are cyclically equivalent if H(w) and H(w′) differ by a sequence of cyclic shifts. We
emphasize that cyclically equivalent is only defined for heaps corresponding to CFC
elements.

Example 2.3.1. Let W be the Coxeter group of type A7.
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(a) The group element corresponding to the heap in Figure 2.4 is CFC since
every sequence of cyclic shifts of the heap corresponds to a reduced expres-
sion for an FC element.

4

5

6

7

Figure 2.4: The heap of a CFC element in W (A7).

(b) The group element corresponding to the heap in Figure 2.5(a) is FC because
there is no opportunity to apply a braid move, but it is not CFC since the

blocks labeled 2 collapse after a cyclic shift, where
27−→ denotes a cyclic

shift with respect to 2.

2

1 3

2

(a)

2

1 3

2

27−→

2

1 3

2 ≡ 1 3

(b)

Figure 2.5: The heap of an FC (but not CFC) element in W (A7).

(c) The group element corresponding to the heap in Figure 2.6 is not CFC
since it is not even FC by Proposition 1.4.10; w has a reduced expression
with 〈23〉3 as a subword, highlighted in blue in the heap.
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2

3

2

1

Figure 2.6: The heap of a non-FC element in W (A7).

We let Ĥ(w) represent the equivalence class of CFC heaps cyclically equivalent to
H(w), which we visualize by wrapping representatives on a cylinder. We call Ĥ(w) a
cylindrical heap.

Example 2.3.2. Let w ∈ CFC(A4) have reduced expression 1324. Then Ĥ(w) can
be represented by the cylindrical heap shown in Figure 2.7, where we identify the
edges of the north and south faces so that the arrows match direction. The elements
of Ĥ(w) are shown in Figure 2.8.

1 3

2 4

Figure 2.7: The cylindrical heap for a CFC element in W (A4).

Remark 2.3.3. Even though we lose the underlying poset structure when we wrap a
heap on a cylinder, a convex subheap retains its natural meaning on the cylinder. An
element w ∈ W (An) is CFC if and only if the cylindrical heap of w does not contain
any representatives having any convex subheaps shown in Figure 2.9.
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1
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Figure 2.8: The elements of the equivalence class of CFC heaps cyclically equivalent
the heap of some w ∈ CFC(A4).

i

i

(a)

i

i+ 1

i

(b)

i

i− 1

i

(c)

Figure 2.9: The convex subheaps not allowed in the heaps for CFC elements.
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Example 2.3.4. Consider the Coxeter group of type A4. Recall that generators
appear at most once in CFC elements, by Proposition 2.2.6. The collection of boxes in
Figure 2.11 contain all reduced expressions for CFC elements in W (A4). The reduced
expressions are grouped into boxes that contain reduced expressions for CFC elements
that differ by commutations and cyclic shifts. We clearly have no opportunity for
braid moves because we only consider CFC elements. If two reduced expressions
are listed in the same column in a box, then they are reduced expressions for the
same CFC element. Alternatively, a column in a particular box corresponds to a
commutation class of reduced expressions.

The boxes are colored based on conjugacy. That is, if two reduced expressions are
in boxes of the same color (or the same box), then the corresponding CFC elements
are conjugate. If two reduced expressions are in the same box, then the corresponding
CFC elements differ by a sequence of cyclic shifts, i.e., the reduced expressions look
the same, up to commutation, when written in a circle.

Note that all of the CFC elements in the blue box are conjugate by Theorem 2.1.7
since they are Coxeter elements. Also, the conjugacy class for 123 is the set of all
CFC elements, i.e., columns, in the pink boxes. Its conjugacy class is partitioned
into two subsets, or cyclic classes, each of which corresponds to a cylindrical heap.
That is, the heaps of all the reduced expressions in the box with 123 are cyclically
equivalent, and so the cylindrical heap for this box is shown in Figure 2.10(a). The
heaps of all the reduced expressions in the box with 234 yield the cylindrical heap
shown in Figure 2.10(b).

1

2

3

(a)

2

3

4

(b)

Figure 2.10: The cylindrical heaps corresponding to cyclic classes of CFC elements
of W (A4).

We are able to move between the cyclic classes since the elements are all conjugate.
It is disappointing that we cannot say everything conjugate to 123 is conjugate by
cyclic shifts (a generalization of Theorem 2.1.7). Thus, we need another way to move
between the cyclic classes. It turns out that we can just “slide” the cylindrical heaps
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to move from the cyclic class containing 123 to the cyclic class containing 234. We
will discuss this in more detail in Section 3.1.

e

1 2 3 4

13
31

24
42

14
41

12 21 23 32 34 43

123 213 132 321
231 312

234 243 324 432
423 342

124
142
412

134
314
341

143
413
431

214
241
421

1234 4321 1243 2134 3421 4312 1324 2143
1423 2314 3241 4132 3124 2413
4123 2341 3214 1432 1342 2431

3142 4213
3412 4231

Figure 2.11: The conjugacy, cyclic, and commutation classes of CFC elements in
W (A4).

In [8], Stembridge classified the Coxeter groups that contain finitely many FC
elements (Theorem 1.3.6). Similarly, the CFC-finite groups can be defined as the
Coxeter groups that contain only finitely many CFC elements.

Theorem 2.3.5 (Boothby, et al., [2]). The irreducible CFC-finite Coxeter groups are
An with n ≥ 1, Bn with n ≥ 2 , Dn with n ≥ 4, En with n ≥ 6, Fn with n ≥ 4, Hn
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with n ≥ 3, and I2(m) with 5 ≤ m <∞. Thus, a Coxeter group is CFC-finite if and
only if it is FC-finite. The graphs of FC- and CFC-finite Coxeter groups are shown
in Figure 1.2.

2.4 Pattern avoidance for CFC elements

In this section, W refers to the Coxeter group of type An. Recall that W is iso-
morphic to the symmetric group Sn+1 via the mapping that sends si to the adjacent
transposition (i i + 1). Also recall that every permutation can be written uniquely
(up to commutation) as a product of disjoint cycles. We will not make a distinction
between an element from W (An) and the corresponding permutation in Sn+1.

As a convention, we will multiply (compose) permutations right to left. Recall
that if w ∈ Sn, then [w(1) w(2) · · ·w(n)] is the one-line notation corresponding to w.
Note the use of brackets.

Example 2.4.1. Let W be the Coxeter graph of type A4. Let w ∈ W have reduced
expression w = 12342. Then the corresponding permutation in S5 is

(12)(23)(34)(45)(23) = (1245).

Then, in one-line notation, we have

(1245) = [24351]

since 1 is sent to 2, 2 is sent to 4, 3 is sent to itself, 4 is sent to 5, and 5 is sent back
to 1.

We can depict the one-line notation of a permutation w as a graph to see its shape.
A permutation line graph has line segments joining (i, w(i)) to (i + 1, w(i + 1)) for
each 1 ≤ i ≤ n− 1.

Example 2.4.2. We consider some permutation line graphs.

(a) Consider the permutation w = [2413]. Then the permutation line graph is
shown in Figure 2.12(a).

(b) Consider the permutation w = [315462]. Then the permutation line graph
is shown in Figure 2.12(b).
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(a)
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4

5

6

(b)

Figure 2.12: Permutation line graphs.

Using the notion of pattern avoidance, we can determine whether a permutation
is FC or CFC by inspecting its one-line notation. If w ∈ W (An), then w avoids
the pattern 321 if there is no subset {i, j, k} ⊆ {1, . . . , n + 1} with i < j < k and
w(k) < w(j) < w(i). Similarly, a permutation w avoids the pattern 3412 if there is no
subset {i, j, k, `} ⊆ {1, . . . , n+1} with i < j < k < ` and w(k) < w(`) < w(i) < w(j).

Note that the elements that constitute the 321 and 3412 patterns need not be con-
secutive. To have a 321 pattern, the one-line notation must have a strictly descending
subsequence of three elements. Portions of the permutation line graphs corresponding
to the patterns 321 and 3412 are shown in Figure 2.13.

i j k

w(k)

w(j)

w(i)

· · · · · · · · ·

...

...

...

(a) The pattern 321

i j k `

w(k)

w(`)

w(i)

w(j)

· · · · · · · · · · · ·

...

...

...

...

(b) The pattern 3412

Figure 2.13: The permutation line graphs of the 321 and 3412 patterns.
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Example 2.4.3. Let w ∈ W (A5) have reduced expression w = 234513. Then w
corresponds to

(23)(34)(45)(56)(12)(34) = (13562)

in S6. The one-line notation for w is [315462]. There is a 321 pattern in the one-line
notation, highlighted in green, but there is no 3412 pattern. The permutation line
graph for [315462] is shown in Figure 2.12(b).

Proposition 2.4.4 (Billey, [1]). An element w ∈ W (An) is FC if and only if w is
321-avoiding.

As a consequence of Proposition 2.4.4, the element from Example 2.4.3 is not FC.
The following proposition about pattern avoidance is from [2].

Proposition 2.4.5 (Boothby, et al., [2]). An element w ∈ W (An) is CFC if and only
if w is 321- and 3412-avoiding.

Example 2.4.6. We will now explore a few examples.

(a) Let W be the Coxeter group of type A3. Then W ∼= S4. Let w ∈ W have
reduced expression w = 132. Then w is CFC since w is a Coxeter element.
In this case, its heap is shown in Figure 2.14

1 3

2

Figure 2.14: The heap for a CFC element in W (A3).

We see that w corresponds to the permutation (12)(34)(23) = (1243) =
[2413] in S4 in cycle notation and one-line notation. The permutation
line graph is shown in part (a) of Example 2.4.2. Since there are only
four elements and is not [3412] exactly, w is clearly 3412-avoiding. It is
also 321-avoiding because there is not a strictly decreasing subsequence
of three elements in the one-line notation. We can also see this in the
permutation line graph. These conclusions agree with Proposition 2.4.5.
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(b) Let W be the Coxeter group of type A3. Then W ∼= S4. Let w ∈ W have
reduced expression w = 3213. Then, in cycle and one-line notations, we
have that w corresponds to

(34)(23)(12)(34) = (124) = [2431]

in S4. Since 431 in the one-line notation is a 321 pattern, [2431] is not
321-avoiding. We can see this in the permutation line graph, shown in
Figure 2.15(a), where the circled points correspond to the elements that
constitute the 321 pattern. Then, by Proposition 2.4.4, w is not FC, and
hence not CFC. In this case, the heaps for w are shown in Figures 2.15(b)
and 2.15(c). It is clear from the heaps that w is not FC because each heap
contains a convex subheap corresponding to the braid relation 323 = 232.

1 2 3 4

1

2

3

4

(a)

3

2

1 3

(b)

2

3

2

1

(c)

Figure 2.15: The permutation line graph and two heaps corresponding to some w ∈
W (A4).

(c) Let W be the Coxeter group of type An where n is at least 7. Let w ∈ W
correspond to the element [· · · 518324 · · · ] of Sn+1. Note that this element
is not 3412-avoiding because the pink elements create a 3412 pattern. So,
w is not CFC. Moreover, w is not even FC by Proposition 2.4.4 because
832 exhibits a 321 pattern.

(d) Let W be the Coxeter group of type A3. Then W ∼= S4. Let w ∈ W have
reduced expression w = 2132. Then w is FC and the heap of w is shown
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in Figure 2.16. Inspecting the heap makes it clear that w is not CFC.
Moreover, we see that the corresponding permutation is

(23)(12)(34)(23) = (13)(24) = [3412],

which is obviously not 3412-avoiding but is 321-avoiding.

2

1 3

2

Figure 2.16: The heap of an FC element of W (A3).

(e) Let w ∈ W (A4) have reduced expression w = 1234. Then w is FC
and the heap of w is shown in Figure 2.17. Then w corresponds to
(12)(23)(34)(45) = (12345). All possible sequences of cyclic shifts of H(w)
and their corresponding permutations in S5 are shown in Figure 2.18. We
shift the pink blocks to obtain the heap that follows. Since w is a Coxeter
element, it is CFC, and every cyclic shift of w is also CFC by Remark 2.2.4.

1

2

3

4

Figure 2.17: The heap of a CFC element of W (A4).
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1

2

3

4

7−→ (13452)
1

2

3

4
7−→ (12453)

1

2

3

4 7−→ (12354)
1

2

3

4

7−→ (13542)

1

2

3

4

7−→ (14532)

1

2

3

4

7−→ (15432)

1

2

3

4
7−→ (14532)

Figure 2.18: Cyclic shifts of the heap of a CFC element of W (A4) and the corre-
sponding permutations.

Recall that two permutations are conjugate if and only if they have the same
cycle type. Since Coxeter elements in W (An) correspond to (n + 1)-cycles in Sn+1,
all Coxeter elements are conjugate as they have the same cycle type. So, all Coxeter
elements are cyclically equivalent by Theorem 2.1.7 and as seen in Figure 2.11, but
not all (n+ 1)-cycles correspond to Coxeter elements.

For example, 1234 = (12)(23)(34)(45) = (12345). There are seven other Coxeter
elements conjugate to 1234, as shown in Figure 1.1, but there are 24 distinct 5-cycles
in S5.

Given a product of disjoint cycles, we want to be able to determine if the group
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element corresponding to the permutation is a CFC element. For example, which
4-cycles in S4 correspond to CFC elements in A3? In order to attempt to answer this
question, we need a couple definitions.

Let (· · · i w(i) w2(i) · · · ) be a cycle in the permutation corresponding to w ∈
W (An), assuming the smallest element appearing in the cycle is written first. Then
there is a direction change at w(i) if

(a) i < w(i) and w(i) > w2(i) or

(b) i > w(i) and w(i) < w2(i).

Example 2.4.7. Consider the symmetric group S6. Let w = (12435) and y =
(135)(246) in S6. Then neither cycle for y has a direction change, but there is a
direction change at 4 in w since i = 2 < w(i) = 4 and 4 = w(i) > w2(i) = 3. There
is also a direction change at 3 in w.

We define the support of a cycle c of w to be the set of numbers appearing in the
cycle, denoted by suppcycle(c). Note that suppcycle(c) is not the same set as supp(w),
even in the case when w corresponds to a single cycle. We say a cycle c has connected
support if the support of c is a set of consecutive numbers.

Example 2.4.8. The support of the permutation (1357) is {1, 3, 5, 7}, so (1357) does
not have connected support. However, the permutation (234) does have connected
support, namely suppcycle((234)) = {2, 3, 4}.

Utilizing Sage [7], we witnessed evidence of the following conjecture, which we
believe is true in general.

Conjecture 2.4.9. Let w ∈ W (An) correspond to a permutation with disjoint cycles
c1, c2, . . . , ck in Sn+1. Assume each cj is written with the smallest number first. Then
w ∈ CFC(An) if and only if each cj has connected support and has at most one
direction change.

Example 2.4.10. We return to part (e) of Example 2.4.6. In that example, we have
a 5-cycle corresponding to each cyclic shift of the heap of 1234. Note that each of the
5-cycles satisfies both conditions of Conjecture 2.4.9. However, the cycle w = (14352)
has three direction changes, namely, at 4, 3, and 5. One heap of w corresponding to
the reduced expression 324134 is shown in Figure 2.19. Then w is not CFC since w
is not FC, due to the appearance of a 434 subword, satisfying Conjecture 2.4.9.
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3

2 4

1 3

4

Figure 2.19: A heap for an element of W (A4) that corresponds to a permutation in
S5 with more than one direction change.

Cycle type provides insight into the structure of the sets of conjugate CFC ele-
ments. However, our ultimate goal is to generalize to other types of Coxeter groups,
where cycle type is not available.

33



Chapter 3

Conjugacy classes of CFC elements
in Coxeter groups of type An

In this chapter, we focus exclusively on Coxeter systems of type An.

3.1 Chunks and rings

In order to formalize the “sliding” of cylindrical heaps as first mentioned in Exam-
ple 2.3.4, we develop the notion of chunks and rings. Recall from Section 2.2 that
the CFC elements in Coxeter groups of type An are those elements that correspond
to subexpressions of Coxeter elements.

Definition 3.1.1. Let w ∈ CFC(An). Then we refer to a diagonal heap (or diagonal
subheap) of size m as shown in Figure 3.1 where k′ = k + m − 1, 1 ≤ k ≤ n, and
1 ≤ m ≤ n− k + 1.

k

k + 1

. . .

k′

Figure 3.1: A diagonal heap.
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Definition 3.1.2. Let w ∈ CFC(An). We call a convex subheap of the heap of w
consisting of m blocks a chunk of size m if it corresponds to a maximal connected
component of the underlying Hasse diagram for the heap of w.

Notice that diagonal heaps are examples of heaps consisting of exactly one chunk.

Example 3.1.3. Let w ∈ W (A6) have reduced expression w = 12356. Then w is
CFC, and its heap is shown in Figure 3.2(a). The underlying Hasse diagram is shown
in Figure 3.2(b). Note that there are two connected components of the Hasse diagram,
and hence two chunks in H(w). We can see the chunks in the original heap, as well.
The vertical line in Figure 3.2(a) shows the separation of the two chunks. The pink
and blue chunks can move independently in the vertical direction.

1

2

3 5

6

(a)

1

2

3

5

6

(b)

Figure 3.2: The heap for a CFC element with its chunks colored pink and blue
together with its underlying Hasse diagram.

Suppose w,w′ ∈ CFC(An) such that Ĥ(w) = Ĥ(w′). Suppose H(w) consists of
a single chunk of size k. Then H(w′) also consists of a single chunk of size k having
the same blocks as H(w), by Theorem 2.1.7.

Now, suppose w,w′ ∈ CFC(An) such that H(w) and H(w′) each have chunks C
and C ′, respectively, with exactly the same blocks but not necessarily in the same
configuration. Then it follows from Theorem 2.1.7 that we can obtain C ′ by applying
cyclic shifts to C. In this case, we say that C and C ′ are chunk equivalent. Observe
that two chunks are chunk equivalent if and only if they differ by a sequence of cyclic
shifts. This generates an equivalence relation on the set of possible chunks of heaps
for CFC elements in W (An).
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Define Ĉ to be the equivalence class of the chunk C, which we visualize by wrap-
ping representatives on a cylinder. It is easy to show that every chunk equivalence
class contains a diagonal representative. We call the equivalence class of a chunk a
ring. That is, a ring is a chunk wrapped on a cylinder.

For each w ∈ CFC(An), Ĥ(w) can be thought of as a disjoint union of rings. We
can obtain a new cylindrical heap by sliding rings by adding some j ∈ Z to the label
of each block in the ring. We say two rings are slide equivalent if we can slide one ring
j ∈ Z spaces to obtain the other ring. Note that two rings that are slide equivalent
have the same number of blocks. Two cylindrical heaps are slide equivalent if we can
slide the rings of one cylindrical heap to obtain the other cylindrical heap. Note that
the corresponding rings are in the same order.

Example 3.1.4. Let w, y ∈ CFC(A9) have reduced expressions w = 124567 and
y = 236789, respectively. Then the cylindrical heaps corresponding to H(w) and
H(y) are shown in Figure 3.3(a) and 3.3(b), respectively. Each of the cylindrical
heaps consists of two rings. We can see that Ĥ(w) and Ĥ(y) are slide equivalent
since we can add one to each of the labels of the blocks in the first ring of Ĥ(w) to
obtain the first ring of Ĥ(y) and add two to each of the blocks in the second ring of
Ĥ(w) to obtain the second ring of Ĥ(y).

1

2 4

5

6

7

(a)

2

3 6

7

8

9

(b)

Figure 3.3: Two slide equivalent cylindrical heaps.

Definition 3.1.5. Suppose w,w′ ∈ CFC(An) are such that Ĥ(w) and Ĥ(w′) consist
exactly of the rings R1, . . . , Rk and R′1, . . . , R

′
k, respectively. Then Ĥ(w) and Ĥ(w′)

are ring equivalent if there exists a bijection Ri ←→ R′i such that Ri and R′i consist
of the same number of blocks (not necessarily with the same labels).

Example 3.1.6. Let w ∈ W (A6) have reduced expression w = 12356. Then w is
CFC, and its heap is shown in Figure 3.2(a). Recall that the heap consists of two
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chunks. The cylindrical heap Ĥ(w) is shown in Figure 3.4(a) and the rings are the
chunks wrapped on a cylinder, i.e., the rings are as shown in Figure 3.4(b). We see
that the cylindrical heap in Figure 3.5 is ring equivalent to Ĥ(w) because there are
exactly two rings, one of size three and one of size two, in each cylindrical heap.

1

2

3 5

6

(a)

1

2

3

5

6

(b)

Figure 3.4: The cylindrical heap and rings for some CFC element.

3

4 7

8

9

(a)

3

4

7

8

9

(b)

Figure 3.5: A cylindrical heap ring equivalent to the one in Figure 3.4(a) together
with its rings.

Definition 3.1.7. We refer to a heap as simple if it is as shown in Figure 3.6, where
each chunk is diagonal, the leftmost chunk starts at 1, and the chunks are as close to
each other as possible.
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1

2

. . .

k

k + 2

k + 3

. . .

k′

k′ + 2

k′ + 3

. . .

k′′

· · ·

h+ 2

h+ 3

. . .

h′

Figure 3.6: A simple heap.

Remark 3.1.8. Note that if w ∈ CFC(An), then there exists some y ∈ CFC(An)
having a simple heap such that Ĥ(w) is ring equivalent to Ĥ(y).

3.2 Conjugacy classes of CFC elements in W (An)

In this section, we give a constructive description of conjugate CFC elements. The
goal of this section is to prove the following theorem.

Theorem 3.2.1. Let w, y ∈ CFC(An). Then w and y are conjugate if and only if
Ĥ(w) and Ĥ(y) are ring equivalent.

The following example motivates the proof of Lemma 3.2.3.

Example 3.2.2. Let w, y ∈ W (A7) have reduced expressions w = 3456 and y = 4567,
respectively. Note that w and y are both CFC, so there is a unique heap for each,
as shown in Figures 3.7(a) and 3.7(b), respectively. Notice that Ĥ(w) and Ĥ(y) are
ring equivalent.

3

4

5

6

(a)

4

5

6

7

(b)

Figure 3.7: The heaps for Example 3.2.2.
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We claim that we can obtain y by conjugating w by x, where x has reduced
expression x = 34567. Then the heap of xwx−1 is shown in Figure 3.8(a), where the
orange blocks correspond to the heap of x, the blue blocks correspond to the heap of
w, and the green blocks correspond to the heap of x−1. Then applying Lemma 1.4.11
to the extra long 76-chain, denoted in the heap in Figure 3.8(a) by the hatched
blocks, we get the heap shown in Figure 3.8(b). Now we can apply Lemma 1.4.11 to
the extra long 65-chain to get the heap in Figure 3.8(c). Continuing in this manner,
applying Lemma 1.4.11 to the new extra long sisj-chains created, we get the heap
in Figure 3.8(d). Applying Lemma 1.4.11 to the extra long 34-chain, denoted in the
heap by the hatched blocks, we get the heap in Figure 3.8(e). Then, canceling the
two adjacent 3 blocks, denoted in the heap by the checked blocks, the result follows,
as shown in Figure 3.8(f).
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4

5

6

7

3

4

5

6
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3

(a)

3
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6

3

4

5

6
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4

3

(b)
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4
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4

5

6

7

4

3

(c)

Figure 3.8: The heaps for Example 3.2.2.
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Figure 3.8: The heaps for Example 3.2.2 (continued).

We can generalize the technique used in the previous example to prove the fol-
lowing lemma, which shows that two CFC elements are conjugate if their cylindrical
heaps are slide equivalent by one space.

Lemma 3.2.3. Let w ∈ CFC(An). Suppose H(w) has a diagonal chunk C where the
largest label of C is k′ ≤ n−1. Let y ∈ CFC(An) such that Ĥ(y) is slide equivalent to
Ĥ(w) by sliding Ĉ, the ring for the chunk C, one space to the right. Then y and w are
conjugate. That is, we can slide the ring in Figure 3.9(a) to the ring in Figure 3.9(b),
where k′ = k +m for some m via conjugation.

k

k + 1

. . .

k′

(a)

k + 1

k + 2

. . .

k′ + 1

(b)

Figure 3.9: The rings for Lemma 3.2.3.
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Proof. Without loss of generality, assume H(w) consists of a diagonal single chunk,
where w = (k)(k + 1) · · · (k′) is a reduced expression for w. Notice that this implies
there is no block in H(w) labeled by k′ + 1.

Let x have reduced expression x = (k)(k + 1) · · · (k′)(k′ + 1). Then a heap of w
conjugated by x, namely, H(xwx−1), is shown in Figure 3.10(a), where the orange
blocks correspond to the heap of x, the blue blocks correspond to the heap of w,
and the green blocks correspond to the heap of x−1. Then, we have an extra long
(k′ + 1)(k′)-chain, denoted in the heap by the hatched blocks. By Lemma 1.4.11,
we get the heap in Figure 3.10(b) since the orange k′ + 1 block and the green k′

block are eliminated. Now, in the new heap in Figure 3.10(b), we have an extra long
(k′)(k′ − 1)-chain, denoted by the hatched blocks, so applying Lemma 1.4.11 again,
we eliminate the orange k′ block and the green k′ − 1 block.

Continuing in this manner, applying m iterations of Lemma 1.4.11 to m extra long
sisj-chains, we get the heap shown in Figure 3.10(c). After applying Lemma 1.4.11
to the extra long (k)(k+ 1)-chain, denoted in the heap by the hatched blocks, we get
the heap in Figure 3.10(d). Then, canceling the two adjacent k blocks, denoted in the
heap by the checked blocks, the result follows, as shown in Figure 3.10(e). Note that
the last application of Lemma 1.4.11 was to an extra long (k)(k+ 1)-chain located at
the top of the heap.

Remark 3.2.4. Suppose Ĥ(w) and Ĥ(y) are slide equivalent by sliding rings of Ĥ(w)
one space to the right to obtain Ĥ(y). Equivalently, we can obtain Ĥ(w) by sliding
rings of Ĥ(y) one space to the left. In this case, we can obtain w by conjugating y by
x−1, where x is as given in the proof of Lemma 3.2.3. It follows that if w, y ∈ CFC(An)
such that Ĥ(w) is slide equivalent to Ĥ(y), then w is conjugate to y since we can
cyclically shift chunks of H(w) to obtain diagonal chunks and then use Lemma 3.2.3
as necessary to shift the diagonal chunks. We can then obtain the chunks of H(y) by
doing the appropriate cyclic shifts.
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Figure 3.10: The heaps for Lemma 3.2.3.
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We now state a lemma that will be useful in the proof of the lemma that follows.

Lemma 3.2.5. Let w ∈ W (An) have reduced expression w. If H(w) has the heap
shown in Figure 3.11(a) as a convex subheap, then we can replace it with the convex
subheap shown in Figure 3.11(b) to obtain another heap for w.

Proof. It follows from the relations in W (An) that the subword

(k)(k + 1) · · · (k′)(k′ + 1)(k′) · · · (k + 1)(k) (3.1)

can be transformed into

(k′ + 1)(k′) · · · (k + 1)(k)(k + 1) · · · (k′)(k′ + 1), (3.2)

where k′ = k+m, by performing a sequence of braid moves. In the heap, the subword
in (3.1) corresponds to the convex subheap shown in Figure 3.11(a) and the subword
in (3.2) corresponds to the subheap shown in Figure 3.11(b). Suppose the convex
subheap in Figure 3.11(a) appears in H(w). Then applying the braid moves to the
blocks corresponding to the subword in (3.1) to obtain blocks corresponding to the
subword in (3.2), we get the convex subheap in Figure 3.11(b).

k

k + 1

. . .

k′

k′ + 1

k′

. .
.

k + 1

k

(a)

k′ + 1

k′

. .
.

k + 1

k

k + 1

. . .

k′

k′ + 1

(b)

Figure 3.11: The equivalent convex subheaps for Lemma 3.2.5, where k′ = k +m.
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Note that any blocks that occur above or below the convex subheap in Fig-
ure 3.11(a) must be shifted vertically as necessary when replacing the first convex
subheap with the one in Figure 3.11(b).

Example 3.2.6. Let w ∈ W (A5) have expression w = 3524343213. Then a heap for
w is shown in Figure 3.12(a) and contains a convex subheap as in Lemma 3.2.5, high-
lighted in green. Applying Lemma 3.2.5 to H(w), we get the heap in Figure 3.12(b).
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(b)

Figure 3.12: The heaps for Example 3.2.6.

The following example motivates the proof of Lemma 3.2.8.

Example 3.2.7. Let w, y ∈ W (A6) have reduced expressions w = 12356 and y =
12456. Then, w and y are both CFC, so there is a unique heap for each. Then Ĥ(w)
and Ĥ(y) are shown in Figures 3.13(a) and 3.13(b), respectively. Notice that each
has two rings, and, moreover, Ĥ(w) is ring equivalent to Ĥ(y).
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Figure 3.13: The cylindrical heaps for Example 3.2.7.

We claim that w and y are conjugate. Let x have reduced expression

x = 345623451234 = (3456)(2345)(1234). (3.3)

Then the heap H(xwx−1) is shown in Figure 3.14(a). By applying Lemma 3.2.5
to 1234321, denoted in H(xwx−1) by hatched blocks, we obtain the heap in Fig-
ure 3.14(b). Now, we apply Lemma 1.4.11 to the extra long 54-chain in the heap in
Figure 3.14(b), denoted by hatched blocks. Then, we have an extra long 43-chain
to which we can apply Lemma 1.4.11. Continuing in this manner, we get the heap
shown in Figure 3.14(c).

We can apply Lemma 3.2.5 to 2345432 (hatched) to get the heap shown in Fig-
ure 3.14(d). Now we apply Lemma 1.4.11 to the extra long 65-chain (hatched). Then,
we have an extra long 54-chain to which we can apply Lemma 1.4.11. Continuing,
we apply Lemma 1.4.11 to the extra long 43-chain and the extra long 32-chain and
we get the heap shown in Figure 3.14(e). Finally, we apply Lemma 3.2.5 to 3456543
(hatched) and get the heap shown in Figure 3.14(f). We can cancel the adjacent 6
blocks (checked), followed by adjacent 5 blocks, adjacent 4 blocks, and adjacent 3
blocks. After all the cancellation, we get the heap shown in Figure 3.14(g), which
yields the desired result.
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Figure 3.14: The heaps for Example 3.2.7.
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Figure 3.14: The heaps for Example 3.2.7 (continued).
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We can generalize the technique used in the previous example to prove the follow-
ing lemma, which allows us to permute two adjacent diagonal chunks.

Lemma 3.2.8. Let w, y ∈ CFC(An) such that H(w) and H(y) are simple, each
consisting of two chunks as in Figure 3.15(a), where the chunk starting at 1 has size
k and the adjacent chunk has size m and k′ = k +m. Then w and y are conjugate.

1

2

. . .

k

k + 2

k + 3

. . .

k′ + 1

(a)

1

2

. . .

m

m+ 2

m+ 3

. . .

k′ + 1

(b)

Figure 3.15: The heaps for Lemma 3.2.8.

Proof. We first consider the case k > m. Let x ∈ W (An) have a reduced expression
x that consists of m + 1 ascending subwords of k + 1 generators each, starting with
(m+1)(m+2) · · · (k′+1) and being such that the sequence of first generators of each
subword descends to 1 (as in Example 3.2.7). That is,

x = (m+ 1)(m+ 2) · · · (k′ + 1)︸ ︷︷ ︸
1

(m)(m+ 1) · · · (k′)︸ ︷︷ ︸
2

· · · (2)(3) · · · (k)︸ ︷︷ ︸
m

(1)(2) · · · (k + 1)︸ ︷︷ ︸
m+1

.

Conjugate w by x, and consider the heap H(xwx−1), shown in Figure 3.16(a), where
k′ = k +m and orange blocks correspond to the heap of x, blue blocks correspond to
the heap of w, and green blocks correspond to the heap of x−1. Now, to the heap in
Figure 3.16(a), we apply Lemma 3.2.5 to

(1)(2) · · · (k)(k + 1)(k) · · · (2)(1),

denoted by hatched blocks, to get the heap shown in Figure 3.16(b).
Then, as in the proof of Lemma 3.2.3, apply Lemma 1.4.11 to the extra long

(k + 2)(k + 1)-chain, denoted in the heap in Figure 3.16(b) as hatched blocks. This
creates an extra long (k+1)(k)-chain. Continuing this process k times, we get the heap
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shown in Figure 3.16(c) since the blue (1)(2) · · · (k)(k+ 2), green (k+ 1), and orange
(2)(3) · · · (k + 2) blocks in Figure 3.16(b) cancel via the iterations of Lemma 1.4.11
with extra long sisj-chains.

Then, after m steps as above, we get the heap shown in Figure 3.16(d). Finally,
we apply Lemma 3.2.5 to the blocks labeled

(m+ 1)(m+ 2) · · · (k′)(k′ + 1)(k′) · · · (m+ 2)(m+ 1),

denoted in the heap in Figure 3.16(d) by hatched blocks, to get the heap shown in
Figure 3.16(e). There are adjacent k′ + 1 blocks that cancel, denoted in the heap by
checked blocks, followed by adjacent k′ blocks, and so on. After the cancellation, we
get the heap shown in Figure 3.16(f) and the result follows.

In the case where k < m, conjugate w by x−1, as given above, to obtain y.

Remark 3.2.9. If the heap of w is not simple, we can perform a sequence of cyclic
shifts and applications of Lemma 3.2.3 and Remark 3.2.4 to obtain a simple heap,
and, after applying Lemma 3.2.8, we can reverse the cyclic shifts and applications of
Lemma 3.2.3 and Remark 3.2.4.
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Figure 3.16: The heaps for Lemma 3.2.8.
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Figure 3.16: The heaps for Lemma 3.2.8 (continued).
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Figure 3.16: The heaps for Lemma 3.2.8 (continued).
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We are now ready to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Suppose w, y ∈ CFC(An) are conjugate. Note that every
chunk of size ` in W (An) corresponds to a cycle of length ` + 1 with connected
support in Sn+1. In particular, the chunk that corresponds to the group element
(k)(k+1) · · · (k+m) corresponds to the (m+2)-cycle (k k+1 · · · k+m k+m+1). By
assumption, as permutations, w and y in Sn+1 have the same cycle type. Suppose w
and y each consist of products of disjoint cycles of lengths k1, k2, . . . , ks. In this case, it
is not possible for H(w) and H(y) to have a different number of chunks. Furthermore,
there are n chunks of size k in H(w) if and only if there are n chunks of size k in
H(y). Then both of H(w) and H(y) consist of chunks of sizes k1−1, k2−1, . . . , ks−1.
That is, for every ring R in Ĥ(w), there is a corresponding ring R′ in Ĥ(y). Then,
we can permute and slide rings in Ĥ(w) as necessary to obtain Ĥ(y). Hence Ĥ(w)
and Ĥ(y) are ring equivalent.

Now, suppose Ĥ(w) and Ĥ(y) are ring equivalent. Then there exists some se-
quence of cyclic shifts, slides, and permutations of chunks that takes Ĥ(w) to Ĥ(y).
We can perform these operations via conjugation, as in Lemmas 3.2.3 and 3.2.8 and
Remarks 3.2.4 and 3.2.9. Hence w and y are conjugate.

In the future, we hope to be able to generalize the notion of chunks and rings
to CFC elements of Coxeter groups of types other than An in order to have a result
analogous to Theorem 3.2.1. We will need a different proof for an analogous theorem
in Coxeter group of types other than An since we used cycle type in the argument for
the forward direction of the proof of Theorem 3.2.1.

53



Bibliography

[1] S.C. Billey and B.C. Jones. Embedded factor patterns for Deodhar elements in
Kazhdan–Lusztig theory. Ann. Comb., 11(3–4):285–333, 2007.

[2] T. Boothby, J. Burkert, M. Eichwald, D.C. Ernst, R.M. Green, and M. Macauley.
On the cyclically fully commuative elements of Coxeter groups. J. Algebr. Comb.,
36(1):123–148, 2012.

[3] H. Eriksson and K. Eriksson. Conjugacy of Coxeter elements. Elect. J. Comb.,
16(2), 2009.

[4] D.C. Ernst. Non-cancellable elements in type affine C Coxeter groups. Int. Elec-
tron. J. Algebr., 8:191–218, 2010.

[5] J.E. Humphreys. Reflection Groups and Coxeter Groups. 1990.

[6] D.E. Speyer. Powers of Coxeter elements in infinite groups are reduced. Proc.
Amer. Math. Soc., 137:1295–1302, 2009.

[7] W.A. Stein. Sage Mathematics Software (Version 6.1.1). http://sagemath.org,
2014.

[8] J.R. Stembridge. On the fully commutative elements of Coxeter groups. J. Algebr.
Comb., 5:353–385, 1996.

54


