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ABSTRACT

A CELLULAR QUOTIENT OF THE TEMPERLEY–LIEB
ALGEBRA OF TYPE D

Kirsten N. Davis

The Temperley–Lieb algebra, invented by Temperley and Lieb in 1971,

is a finite dimensional associative algebra that arose in the context of

statistical mechanics. Later in 1971, Penrose showed that this algebra can

be realized in terms of certain diagrams. Then in 1987, Jones showed that

the Temperley–Lieb algebra occurs naturally as a quotient of the Hecke

algebra arising from a Coxeter group of type A. This realization of the

Temperley–Lieb algebra as a Hecke algebra quotient was later generalized

to the case of an arbitrary Coxeter group by Graham.

Cellular algebras were introduced by Graham and Lehrer, and are a

class of finite dimensional associative algebras defined in terms of a “cell

datum” and three axioms. The axioms allow one to define a set of modules

for the algebra known as cell modules, and one of the main strengths of the

theory is that it is relatively straightforward to construct and to classify

the irreducible modules for a cellular algebra in terms of quotients of the

cell modules. In this thesis, we present an associative diagram algebra

that is a faithful representation of a particular quotient of the Temperley–

Lieb algebra of type D, which has a basis indexed by the so-called type II

fully commutative elements of the Coxeter group of type D. By explicitly

constructing a cell datum for the corresponding diagram algebra, we show

that the quotient is cellular.
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Chapter 1

Preliminaries

1.1 Introduction

This thesis is organized as follows. After necessary background material on Cox-
eter systems is presented in Section 1.2, we introduce the class of fully commutative
elements in Section 1.3. Then, in Section 1.4 and Section 1.5, we discuss a visual
representation for elements of Coxeter systems, called heaps. We then recall requi-
site terminology and facts about Hecke algebras in Section 1.6 and Temperley–Lieb
algebras in Section 1.7. In Chapter 2, we establish our notation and introduce all
of the terminology required to define an associative diagram algebra, DTL(Dn), that
is a faithful diagrammatic representation of the Temperley–Lieb algebra of type D,
TL(Dn). Next, in Section 3.2, we construct a faithful diagrammatic representation,

DT̂L(Dn), of a particular quotient of the Temperley–Lieb algebra, T̂L(Dn), that we
introduce in Section 3.1. After defining cellular algebras in Section 3.3, we explicitly
construct a cell datum for DT̂L(Dn) that is used to prove the main result (Theo-

rem 3.3.7 and Corollary 3.3.8), which says that DT̂L(Dn) and therefore T̂L(Dn) are
cellular.

1.2 Coxeter systems

A Coxeter system is a pair (W,S) consisting of a finite set S of generating involutions
and a group W , called a Coxeter group, with presentation

W = 〈S : (st)m(s,t) = e for m(s, t) <∞〉,

where e is the identity, m(s, t) = 1 if and only if s = t, and m(s, t) = m(t, s). It turns
out that the elements of S are distinct as group elements and that m(s, t) is the order
of st.
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Since s and t are elements of order 2, the relation (st)m(s,t) = e can be rewritten
as

sts · · ·︸ ︷︷ ︸
m(s,t)

= tst · · ·︸ ︷︷ ︸
m(s,t)

(1.1)

with m(s, t) ≥ 2 factors. If m(s, t) = 2, then st = ts is called a short braid relation
and s and t commute. Otherwise, if m(s, t) ≥ 3, then relation 1.1 is called a long
braid relation. Replacing sts · · ·︸ ︷︷ ︸

m(s,t)

with tst · · ·︸ ︷︷ ︸
m(s,t)

will be referred to as a braid move.

We can represent (W,S) with a unique Coxeter graph, Γ, having:

1. vertex set S;

2. edges {s, t} labeled with m(s, t) for all m(s, t) ≥ 3.

Since m(s, t) ≥ 3 occurs most frequently, it is customary to leave the corresponding
edge unlabeled.

If (W,S) is a Coxeter system with Coxeter graph Γ, then for emphasis, we may
denote the group as W (Γ). There is a one-to-one correspondence between Coxeter
systems and Coxeter graphs. Given the Coxeter graph Γ, we can uniquely reconstruct
the corresponding Coxeter system. Note that generators s and t are not connected in
the Coxeter graph if and only if s and t commute. In addition, the Coxeter group W
is said to be irreducible if and only if the corresponding Coxeter graph is connected.
If the Coxeter graph is disconnected, the connected components correspond to factors
in a direct product of irreducible Coxeter groups [12, Section 2.2].

Example 1.2.1.

(a) We define An to be the Coxeter graph in Figure 1.1(a). Given An, we can
construct (W (An), S) with the generators {s1, s2, . . . , sn} and defining relations

s2
i = e for all i,

sisj = sjsi when |i− j| > 1,

sisjsi = sjsisj when |i− j| = 1.

The Coxeter group W (An) is isomorphic to the symmetric group Sn+1 under
si 7→ (i, i+ 1).

(b) We define Dn to be the Coxeter graph in Figure 1.1(b). Given Dn, we can
construct (W (Dn), S) with the generators {s1, s1, s2, . . . , sn−1} and defining re-
lations

s2
i = e for all i,

2



sisj = sjsi when |i− j| > 1 for i, j ∈ {1, 2, . . . , n} ,
sisjsi = sjsisj when |i− j| = 1 for i, j ∈ {1, 2, . . . , n} ,
s1si = sis1 for all i ∈ {1, 3, . . . , n} ,

s1s2s1 = s2s1s2.

The Coxeter group W (Dn) is isomorphic to SDn , where SDn is the subgroup of
the group of signed permutations having an even number of sign changes, called
the group of even signed permutations. The main focus of this thesis will be the
Coxeter system of type Dn.

s1 s2 s3 sn−1 sn
· · ·

(a) Type An (n ≥ 2)

s2 s3

s1

s1

sn−2 sn−1

· · ·

(b) Type Dn (n ≥ 4)

Figure 1.1: Coxeter graphs corresponding to Coxeter systems of type An and Dn.

Given a Coxeter system (W,S), a word sx1sx2 · · · sxm in the free moniod on S is
called an expression for w ∈ W if it is equal to w when considered as a group element.
If m is minimal among all expressions for w, the corresponding word is called a reduced
expression for w. In this case, we define the length of w to be `(w) := m. Given
w ∈ W , if we wish to emphasize a fixed, possibly reduced, expression for w, we
represent it as w = sx1sx2 · · · sxm .

Theorem 1.2.2. (Geck, [5, Matsumoto’s Theorem]) If w ∈ W , then every reduced
expression for w can be obtained from any other by applying a sequence of braid moves
of the form

sts · · ·︸ ︷︷ ︸
m(s,t)

7→ tst · · ·︸ ︷︷ ︸
m(s,t)

where s, t ∈ S and m(s, t) ≥ 2. �

It follows from Matsumoto’s theorem that any two reduced expressions for w ∈ W
have the same number of generators in the expression. The support of an element
w ∈ W , denoted supp(w), is the set of all generators appearing in any reduced
expression for w, which is well-defined by Matsumoto’s Theorem. We will use w to
represent a fixed expression, possibly reduced, for w ∈ W . We define a subexpression
of w to be any subsequence of w. If x ∈ W (Γ) has an expression that is equal to
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a subexpression of w, then we write x ≤ w. This is a well-defined partial order
[12, Chapter 5] on W (Γ) and is called the (strong) Bruhat order. We will refer to a
consecutive subexpression of w as a subword.

Let w ∈ W . We define

L(w) := {s ∈ S : `(sw) < `(w)}

and
R(w) := {s ∈ S : `(ws) < `(w)}.

The set L(w) is called the left descent set of w and R(w) is called the right descent
set. It turns out that s ∈ L(w) if and only if w has a reduced expression beginning
with s and s ∈ R(w) if and only if w has a reduced expression ending with s.

Example 1.2.3. Let w ∈ W (A4) and let w = s1s2s1s4s2 be an expression for w.
Then

s1s2s1s4s2 = s2s1s2s4s2

= s2s1s2s2s4

= s2s1s4.

This shows that w is not reduced. However, it turns out that s2s1s4 is a reduced
expression for w and hence l(w) = 3. Note that L(w) = {s2, s4},R(w) = {s1, s4},
and s1s4 is a subword of w.

1.3 Fully commutative

Let (W,S) be a Coxeter system of type Γ and let w ∈ W . Following Stembridge [18],
we define a relation ∼ on the set of reduced expressions for w. Let w1 and w2 be
two reduced expressions for w. We define w1 ∼ w2 if we can obtain w1 from w1 by
applying a single commutation move of the form st 7→ ts, where m(s, t) = 2. Now,
define the equivalence relation ≈ by taking the reflexive transitive closure of ∼. Each
equivalence class under≈ is called a commutation class. If w has a single commutation
class, then we say that w is fully commutative. That is, w is fully commutative if any
two reduced expressions for w can be transformed into each other by a sequence of
short braid relations. We denote the set of all fully commutative elements of W by
FC(Γ) where Γ is the corresponding Coxeter graph to (W,S). The following theorem
shows that we never have an opportunity to apply a long braid relation when w is
fully commutative.

Theorem 1.3.1. (Stembridge, [18]) An element w ∈ W is fully commutative if and
only if no reduced expression for w contains sts · · ·︸ ︷︷ ︸

m(s,t)

as a subword for m(s, t) ≥ 3. �
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Remark 1.3.2. The elements of FC(Dn) are precisely those whose reduced expres-
sions avoid consecutive subwords of the type sisjsi when si and sj are connected in
the Coxeter graph of type Dn

Example 1.3.3. Figure 1.2 depicts all possible reduced expressions of w and the
relationships among them via commutations and long braid moves. It is clear by
inspection that there are two commutation classes for w represented by the two boxes,
hence w is not fully commutative.

s3s1s2s3s4

s1s3 = s3s1

s1s3s2s3s4 s3s2s3 = s2s3s2

s1s2s3s4s2

s2s4 = s4s2

s1s2s3s2s4

Figure 1.2: Commutation classes for a non-fully commutative element.

Example 1.3.4. Figure 1.3 depicts all possible reduced expressions of w and the
relationships among them via only commutations. In this case, we see that every
reduced expression for w can be obtained from another via a sequence of commutation
moves, and hence there is only one commutation class for w. Therefore w is fully
commutative. It is also clear that there is never an opportunity to apply a long braid
relation, which agrees with Theorem 1.3.1.

Stembridge classified the irreducible Coxeter groups that contain a finite number
of fully commutative elements, the so-called FC-finite Coxeter groups. While W (Dn)
is a finite Coxeter group, and therefore contains a finite number of fully commutative
elements, there are examples of infinite Coxeter groups that contain a finite number
of fully commutative elements. For example, Coxeter groups of type En for n ≥ 9 (see
Figure 1.4) are infinite, but contain only finitely many fully commutative elements.

Theorem 1.3.5. (Stembridge, [18]) The irreducible FC-finite Coxeter groups are the
Coxeter groups of type An (n ≥ 1) , Bn (n ≥ 2) , Dn (n ≥ 4) , En (n ≥ 6) , Fn (n ≥ 4) ,
Hn (n ≥ 3) and I2 (m) (3 ≤ m <∞) with corresponding Coxeter graphs shown in Fig-
ure 1.4. �

5



s3s1s2s4s3

s1s3 = s3s1 s2s4 = s4s2

s1s3s2s4s3 s3s1s4s2s3

s1s3 = s3s1s2s4 = s4s2

s1s3s4s2s3

s1s3 = s3s1

s3s4s1s2s3

Figure 1.3: Commutation class for a fully commutative element.

I2(m)
m

An · · · En · · ·

Bn

4
· · · Fn

4
· · ·

Dn · · · Hn

5
· · ·

Figure 1.4: Coxeter graphs corresponding to the irreducible FC-finite Coxeter groups.

1.4 Heaps in type An

Every reduced expression can be associated with a labeled partially ordered set (poset)
called a heap. Heaps provide a visual representation of a reduced expression while
preserving the relations among the generators. For simplicity, we will first define
heaps corresponding to Coxeter groups of type An and mimic the development found
in [1], [2], and [18].

Let (W,S) be a Coxeter system. Suppose w = sx1 · · · sxk is a fixed reduced
expression for w ∈ W (An). We define a partial ordering on the indices {1, . . . , k}
by the transitive closure of the relation jl i if i < j and sxi and sxj do not commute.
In particular, since w is reduced, jli if i < j and sxi = sxj by transitivity. This partial
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order is referred to as the heap of w, where i is labeled by sxi . Each heap corresponds
to a commutation class and it follows from [18] that w is fully commutative if and
only if there is a unique heap associated to w.

Example 1.4.1. Let w = s2s1s3s2s4s5 be a reduced expression for w ∈ FC(A5). We
see that w is indexed by {1, 2, 3, 4, 5, 6}. For example, 6 l 5 since 5 < 6 and s4 and
s5 do not commute. The labeled Hasse diagram for the heap poset of w is shown in
Figure 1.5.

•
s2

•
s1

•
s3

•
s2

•
s4

•
s5

Figure 1.5: Labeled Hasse diagram for the heap of a fully commutative element.

Let w be a fixed reduced expression for w ∈ W (An). As in [1] and [2], we will
represent a heap for w as a set of lattice points embedded in {1, 2, . . . , n}×N. To do
so, we assign coordinates (not unique) (x, y) ∈ {1, 2, . . . , n+ 1} × N to each entry of
the labeled Hasse diagram for the heap of w in such a way that:

1. An entry with coordinates (x, y) is labeled si (or i) in the heap if and only if
x = i;

2. If an entry with coordinates (x, y) is greater than an entry with coordinates
(x′, y′) in the heap then y > y′.

In the case of type An and other straight line Coxeter graphs, it follows from the
definition that (x, y) covers (x′, y′) in the heap if and only if x = x′ ± 1, y > y′, and
there are no entries (x′′, y′′) such that x′′ ∈ {x, x′} and y′ < y′′ < y. This implies that
we can completely reconstruct the edges of the Hasse diagram and the corresponding
heap poset from a lattice point representation. A lattice point representation of a
heap allows us to visualize potentially cumbersome arguments. Note that entries on
top of a heap correspond to generators occurring to the left in the corresponding
reduced expression.

Let w be a reduced expression for w ∈ W (An). We let H(w) denote a lattice
representation of the heap poset in {1, 2, . . . , n + 1} × N. If w is fully commutative,
then the choice of reduced expression for w is irrelevant, in which case, we will often

7



write H(w) and we will refer to H(w) as the heap of w. Note that if w ∈ FC(An),
then entries on the top of a heap correspond to si ∈ L(w).

Given a heap, every generator will have a fixed x-coordinate, yet the y-coordinates
may differ. In particular, two entries labeled by the same generator will possess the
same x-coordinate but may differ by the amount of vertical space between them.

Let w = sx1 · · · sxk be a reduced expression for w ∈ W (An). If sxi and sxj are
adjacent generators in the Coxeter graph with i < j, then we must place the point
labeled by sxi at a level that is above the level of the point labeled by sxj . Because
generators that are not adjacent in the Coxeter graph do commute, points whose
x-coordinates differ by more than one can slide past each other or land at the same
level. To emphasize the covering relations of the lattice representation we will enclose
each entry of the heap in a 2×2 square in such a way that if one entry covers another,
the squares overlap halfway. We will also label the squares with i to represent the
generator si.

Example 1.4.2. Let w = s1s2s4 be a reduced expression for w ∈ FC(A4). Figure 1.6
shows two representations for the heap of w.

1

42

(a)

1 4

2

(b)

Figure 1.6: Two possible representations for the heap of a fully commutative element.

Example 1.4.3. Let w1 = s1s3s2s1 be a reduced expression for w ∈ W (A3). By
applying the short braid relation, s1s3 = s3s1, we can obtain another reduced expres-
sion, w2 = s3s1s2s1 which is in the same commutation class as w1, and hence has the
same heap. But, by applying the long braid relation, s1s2s1 = s2s1s2, we can obtain
a third reduced expression w3 = s3s2s1s2, which is in a different commutation class.
The representations of H(w1), H(w2), and H(w3) are given in Figure 1.7 where we
have color-coded the blocks of the heap that correspond to the long braid relation,
s1s2s1 = s2s1s2.

When w is fully commutative, we wish to make a canonical representation of H(w)
by giving all entries corresponding to elements in L(w) the same vertical position and
all other entries in the heap should have the highest vertical position possible (as in
Figure 1.6(b)).

Let w ∈ FC(An) have reduced expression w = sx1 · · · sxk and suppose sxi and sxj
equal the same generator sm, so that the corresponding entries have x-coordinate m

8



1 3

2

1

(a) H(w1) and H(w2)

3

2

1

2

(b) H(w3)

Figure 1.7: Two heaps for a non-fully commutative element.

in H(w). We say that sxi and sxj are consecutive if there is no other occurrence of
sm occurring between them in w. In this case, sxi and sxj are consecutive in H(w),
as well.

Let w = sx1 · · · sxk be a reduced expression for w ∈ W (An). We define a heap H ′

to be a subheap of H(w) if H ′ = H(w′), where w′ = sy1sy2 · · · sym is a subexpression
(not necessarily a subword) of w.

A subposet Q of a poset P is called convex if y ∈ Q whenever x < y < z in P and
x, z ∈ Q. We will refer to a subheap as a convex subheap if the underlying subposet
is convex.

Example 1.4.4. Let w = s2s1s3s2s4s5, as in Example 1.4.1. Now, let w′ = s2s3s2 be
the subexpression of w that results from deleting all but the first, third, and fourth
generators of w. Then H(w′) equals the heap given in Figure 1.8(a) and is a subheap
of H(w), but is not convex since there is an entry in H(w) labeled by s1 occurring
between the two consecutive occurrences of s2 that does not occur in H(w′). However,
if we do include the entry labeled by s1, then we obtain the heap in Figure 1.8(b),
which is a convex subheap of H(w). Note that if we delete the occurrence of the block
labeled by 1 in the original heap, then the heap in Figure 1.8(a) is a convex subheap.

2

3

2

(a)

2

1 3

2

(b)

Figure 1.8: Subheaps of the heap from Example 1.4.1.

The following fact is implicit in the literature (in particular, see the proof of [18,
Proposition 3.3]) and follows easily from the definitions.
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Proposition 1.4.5. Let w ∈ FC(W ). Then H ′ is a convex subheap of H(w) if and
only if H ′ is the heap for some subword of some reduced expression for w. �

The following lemma follows from [2, Lemma 2.4.5] and will enable us to recognize
when a heap corresponds to a fully commutative element in W (An).

Lemma 1.4.6. Let w ∈ FC(An). Then H(w) cannot contain any of the convex
subheaps in Figure 1.9, where i ∈ {1, . . . , n− 1} and we use to emphasize that no
element of the heap occupies the corresponding position. �

i

i+ 1

i

(a)

i+ 1

i

i+ 1

(b)

Figure 1.9: Impermissible convex subheaps for elements in FC(An).

1.5 Heaps in type Dn

For type Dn, we will represent heaps in a similar fashion, but need to make one modifi-
cation. Recall that in type Dn (see Figure 1.1(b)) the generators are {s1, s1, . . . , sn−1},
where {s1, . . . , sn−1} generates a Coxeter group of type An−1, so we just need to mod-
ify our heaps to include s1. Let w be a fixed reduced expression for w ∈ W (Dn).
We will represent a heap for w as a set of lattice points embedded in {1, 2, . . . , n} ×
N× {−1, 0, 1} and assign coordinates (not unique) (x, y, z) ∈ {1, 2, . . . , n+ 1} ×N×
{−1, 0, 1} to each entry of the labeled Hasse diagram for the heap of w in such a way
that:

1. An entry with coordinates (x, y, 0) is labeled si (or i) in the heap if and only
if x = i and i ∈ {2, 3, . . . , n− 1};

2. An entry with coordinates (1, y,−1) is labeled s1 (or 1) in the heap;

3. An entry with coordinates (1, y, 1) is labeled s1 (or 1) in the heap;

4. If an entry with coordinates (x, y, z) is greater than an entry with coordinates
(x′, y′, z′) in the heap then y > y′.
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To emphasize the covering relations of the lattice we will enclose each entry just as
we did in Section 1.4 but with 2× 2× 2 cubes instead of 2× 2 squares in such a way
that if one entry covers another, the cubes overlap.

Example 1.5.1. Let w = s1s3s2s4s3s5 be a reduced expression for w ∈ FC(D6).
Then Figure 1.10 is a 3-dimensional representation for H(w).

3

3

3 5

5

5

2

2

2 4

4

4

1

1

1 3

3

3

Figure 1.10: A heap for a fully commutative element in W (D6).

The following lemma is analogous to Lemma 1.4.6 and will be helpful in recog-
nizing when a heap represents a fully commutative element in W (Dn). Note that
all heaps corresponding to a fully commutative element in W (Dn) will be referred to
as fully commutative heaps throughout the rest of this thesis. The following Lemma
follows from Remark 1.3.2.

Lemma 1.5.2. Let w ∈ FC(Dn). Then H(w) cannot contain any of the convex

subheaps in Figure 1.11, where i ∈ {2, . . . , n− 2} and we use to emphasize that
no element of the heap occupies the corresponding position. �
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1
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2

(a)
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2

2

1

1

1

2

2

2

(b)

1

1

1

2

2

2

1

1

1

(c)

1

1

1

2

2

2

1

1

1

(d)

i

i

i

i+
1

i+ 1

i+ 1

i

i

i

(e)

i+
1

i+ 1

i+ 1

i

i

i

i+
1

i+ 1

i+ 1

(f)

Figure 1.11: Impermissible convex subheaps for elements in FC(Dn).

We say that a fully commutative heap of type Dn is of type I if the corresponding
w ∈ FC(Dn) has s1s1 as a subword of some reduced expression for w. Otherwise, the
fully commutative heap is of type II.

Example 1.5.3. Figure 1.12 depicts all of the type I heaps for the Coxeter group of
type D4 and Figure 1.13 shows all of the type II heaps for the Coxeter group of type
D4.
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Figure 1.12: Type I heaps for the Coxeter group of type D4.
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Figure 1.13: Type II heaps for the Coxeter group of type D4.
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1.6 Hecke algebras

Let (W,S) be an arbitrary Coxeter system associated to the Coxeter graph Γ. We
define the Z[q, q−1]-algebra, Hq(Γ), with basis consisting of elements Tw, for all w ∈
W , satisfying

TsTw :=

{
Tsw if ` (sw) > ` (w) ,

qTsw + (q − 1)Tw otherwise

where s ∈ S and w ∈ W . If w = sx1sx2 · · · sxk is a reduced expression for w ∈ W ,
then Tw = Tsx1Tsx2 · · ·Tsxk . We will abbreviate Tw with Tx1x2···xk . In particular, Tsi
will be written as Ti.

It is convenient to extend the scalars of Hq(Γ) to produce an A-algebra, H(Γ) =

A⊗Z[q,q−1]Hq(Γ), where A is the ring of Laurent polynomials, Z [v, v−1] , and v = q
1
2

to obtain the Hecke algebra of type Γ denoted by H(Γ).

Example 1.6.1. Let w1 = s1s2s1s3 and w2 = s3s2s3 be reduced expressions for
w1, w2 ∈ W (A3). We wish to calculate Tw2Tw1 . Observe that each of s3s1s2s1s3 and
s2s3s1s2s1s3 are reduced. However, we see that

s3s2s3s1s2s1s3 = s2s3s2s1s2s1s3

= s2s3s1s2s1s1s3

= s2s3s1s2s3,

where the last expression is reduced. This implies that

Tw2Tw1 = T323T1213

= T3T2T3T1213

= T3T2T31213

= T3T231213

= qT23123 + (q − 1)T231213.

The set {Tw : w ∈ W} is is the natural basis for H(Γ) but there is another
remarkable basis {C ′w : w ∈ W}, where

C ′s = v−1Ts + v−1Te

for each s ∈ S. The following theorem defines the basis element C ′w ∈ H(Γ).

Theorem 1.6.2. (Kazhdan, Lusztig [14]) There is a unique element C ′w ∈ H such
that

C ′w =
∑
x≤w

v−l(w)Px,wTx,
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where ≤ is the Bruhat ordering on the Coxeter group W,Px,w ∈ Z [v−1] if x < w, and
Pw,w = 1. �

The polynomials, Px,w, are known as the Kazhdan–Lusztig polynomials and the
set {C ′w : w ∈ W} is known as the Kazdan–Lusztig basis and has multiplication
determined by

C ′sC
′
w :=

{
(v + v−1)C ′sw, if ` (sw) > ` (w)

C ′sw +
∑
µ (s, w)C ′s, otherwise

where µ (s, w) is the leading coefficient of Ps,w.

1.7 Temperley–Lieb algebras

Let (W,S) be a Coxeter system with graph Γ. Next, we define a quotient of H(Γ),
called the Temperley–Lieb algebra of type Γ.

Define J(Γ) to be the two-sided ideal of H(Γ) generated by∑
w∈〈s,s′〉

Tw,

where (s, s′) runs over all pairs of elements of S with 3 ≤ m(s, s′) <∞, and 〈s, s′〉 is
the (parabolic) subgroup generated by s and s′.

Example 1.7.1. In type A3,

〈s1, s2〉 = {e, s1, s2, s1s2, s2s1, s1s2s1} and 〈s2, s3〉 = {e, s2, s3, s2s3, s3s2, s2s3s2},

so J(A3) is generated by

{Te + T1 + T2 + T12 + T21 + T121, Te + T2 + T3 + T23 + T32 + T232}.

Definition 1.7.2. The Temperley–Lieb algebra of type Γ, TL(Γ), is defined to be
the quotient algebra H(Γ)/J(Γ).

Theorem 1.7.3. (Graham, [6]) Let tw denote the image of Tw in the quotient. Then
{tw : w ∈ FC(W )} is a basis for TL(Γ), called the t-basis. �

Theorem 1.7.4. (Green, [11]) Let cw denote the image of C ′w in the quotient. Then
{cw : w ∈ FC(W )} is a basis for TL(Γ), called the canonical basis. �
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Definition 1.7.5. For each si ∈ S, define bi = v−1ti+v
−1. If w ∈ FC(Γ) has reduced

expression w = sx1 · · · sxm , define

bw = bx1 · · · bxm .

The monomial basis is then defined as the set {bw : w ∈ FC(Γ)}.

Theorem 1.7.6. (Graham, [6]) The monomial basis forms a basis for TL(Γ).

Remark 1.7.7. In [11], it is shown that in type Dn, the canonical basis is equal to
the monomial basis.

Now we will present the Temperley–Lieb algebra of type Dn in terms of generators
and relations.

Theorem 1.7.8. (Green, [10]) The algebra TL(Dn) where n ≥ 4 is the unital Z[δ]-
algebra generated by b1, b1, b2, . . . , bn−1 with defining relations

1. b2
i = δbi for all i, where δ = v + v−1;

2. bibj = bjbi if si and sj are not connected in the graph;

3. bibjbi = bi if si and sj are connected in the graph.

Proof. We will check that the relations hold in type Dn, but for the full proof we refer
the reader to [10, Proposition 2.6]. Remember that bi = v−1ti + v−1.

1. We see that

b2
i =

(
v−1ti + v−1

) (
v−1ti + v−1

)
= v−2

(
t2i + 2ti + 1

)
= v−2

(
v2 +

(
v2 − 1

)
ti + 2ti + 1

)
= v−2

(
v2 + v2ti + ti + 1

)
= v−2ti + v−2 + ti + 1

=
(
v−1 + v

) (
v−1ti + v−1

)
= δbi,

since δ = v + v−1.

2. Assume that m(si, sj) = 2. Note that since sisj = sjsi, tij = tji. We see that

bibj =
(
v−1ti + v−1

) (
v−1tj + v−1

)
= v−2 (tij + ti + tj + 1)
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= v−2 (tji + ti + tj + 1)

=
(
v−1tj + v−1

) (
v−1ti + v−1

)
= bjbi.

3. Assume m(si, sj) = 3. Then note that Tiji + Tij + Tji + Ti + Tj + 1 ∈ J(Dn).
This implies that tiji + tji + tij + ti + tj + 1 = 0. We see that

bibjbi =
(
v−1ti + v−1

) (
v−1tj + v−1

) (
v−1ti + v−1

)
=
(
v−2titj + v−2ti + v−2tj + v−2

) (
v−1ti + v−1

)
= v−3

(
titjti + t2i + tjti + ti + titj + ti + tj + 1

)
= v−3

(
v2 +

(
v2 − 1

)
ti + ti + (tiji + tji + tij + ti + tj + 1)

)
= v−3

(
v2 +

(
v2 − 1

)
ti + ti

)
+ 0

= v−3
(
v2 + v2ti

)
= v−1 + v−1ti

= bi.

�

Theorem 1.7.9. (Green, [10]) The algebra TL(An−1) is generated as a unital Z[δ]-
algebra by {b1, b2, . . . , bn−1} with the same relations as Theorem 1.7.8. �

It is known that we can consider TL(An−1) as a subalgebra of TL(Dn) in the
obvious way.

Theorem 1.7.10. (Fan, [4]) The dimension of TL(Dn) is(
n+ 3

2

)
C(n)− 1,

where C(n) is the Catalan number defined by

C(n) :=
1

n+ 1

(
2n

n

)
.

�
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Chapter 2

Diagram algebras

This chapter provides necessary background on diagram algebras and is modeled after
[3].

2.1 Undecorated diagrams

First, we discuss undecorated diagrams and their corresponding diagram algebras.

Definition 2.1.1. Let k be a nonnegative integer. The standard k-box is a rectangle
with 2k points, called nodes, labeled as in Figure 2.1. We will refer to the top of the
rectangle as the north face and the bottom as the south face.

1 2 3

1′ 2′ 3′

k

k′

Figure 2.1: The standard k-box.

The next definition summarizes the construction of the ordinary Temperley–Lieb
pseudo diagrams.

Definition 2.1.2. A concrete pseudo k-diagram consists of a finite number of disjoint
curves (planar), called edges, embedded in the standard k-box with the following
restrictions.
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1. Every node of the box is the endpoint of exactly one edge, which meets the
box transversely.

2. All other edges must be closed (isotopic to circles) and disjoint from the box.

Example 2.1.3. The diagram in Figure 2.2(a) is an example of a concrete pseudo
5-diagram, whereas the diagram in Figure 2.2(b) does not represent a concrete pseudo
5-diagram since the diagram contains edges that are not disjoint (i.e., they intersect),
node 4 is the endpoint for more than one edge, and node 5 is not an endpoint for any
edge.

(a) A concrete pseudo 5-diagram (b) Not a concrete pseudo 5-diagram

Figure 2.2: Examples of diagrams.

We now define an equivalence relation on the set of concrete pseudo k-diagrams.
Two concrete pseudo k-diagrams are (isotopically) equivalent if one concrete diagram
can be obtained from the other by isotopically deforming the edges such that any
intermediate diagram is also a concrete pseudo k-diagram. Note that an isotopy of
the k-box is a 1-parameter family of homeomorhisms of the k-box to itself that are
stationary on the boundary.

Definition 2.1.4. A pseudo k-diagram (or an ordinary Temperley–Lieb pseudo-
diagram) is defined to be an equivalence class of equivalent concrete pseudo k-
diagrams. We denote the set of pseudo k-diagrams by Tk(∅).

Remark 2.1.5. When representing a pseudo k-diagram with a drawing, we pick an
arbitrary concrete representative among a continuum of equivalent choices. When
no confusion can arise, we will not make a distinction between a concrete pseudo
k-diagram and the equivalence class that it represents. We say that two concrete
pseudo k-diagrams are vertically equivalent if they are equivalent in the above sense
by an isotopy that preserves setwise each vertical cross-section of the k-box.

Example 2.1.6. The concrete pseudo 5-diagram in Figure 2.2(a) and the concrete
pseudo 5-diagram in Figure 2.3 are equivalent concrete pseudo 5-diagrams since the
diagram in Figure 2.2(a) can be obtained by isotopically deforming the edges in
Figure 2.3.
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Figure 2.3: An isotopically equivalent diagram of Figure 2.2(a).

Let d be a diagram and let e be an edge of d. If e is a closed curve occurring
in d, then we call e a loop. For example, the diagram in Figure 2.2(a) has a single
loop. If e joins node i in the north face to node j′ in the south face, then e is called
a propagating edge from i to j′. If e is not propagating, loop or otherwise, it will be
called non-propagating.

Note that we used the word “pseudo” in our definition to emphasize that we
allow loops to appear in our diagrams. In Section 2.2, we will add decorations to our
diagrams. The presence of ∅ in the definition above is to emphasize that the edges of
the diagrams are undecorated.

Note that the number of non-propagating edges in the north face of a diagram
must be equal to the number of non-propagating edges in the south face. We define
the function a : Tk(∅)→ Z+ ∪ {0} via

a(d) = number of non-propagating edges in the north face of d

and the function p : Tk(∅)→ Z+ ∪ {0} via

p(d) = number of propagating edges in the north face of d

where 2a(d) + p(d) = k. For example, Figure 2.2(a) has two non-propagating edges
and one propagating edge in the north face and therefore, a(d) = 2 and p(d) = 1.
There is only one diagram with a-value 0 having no loops; namely the diagram de
that appears in Figure 2.4. The maximum value that a(d) can take is bk/2c.

de := · · ·

Figure 2.4: The only diagram having a-value 0 and no loops.

We wish to define an associative algebra that has the pseudo k-diagrams as a
basis.
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Definition 2.1.7. Let R be a commutative ring with 1. The associative algebra Pk(∅)
over R is the free R-module having Tk(∅) as a basis, with multiplication (referred to
as diagram concatenation) defined as follows. We define multiplication in Pk(∅) by
defining multiplication in the case where d and d′ are basis elements, and then extend
bilinearly. If d, d′ ∈ Tk(∅), the product d′d is the element of Tk(∅) obtained by placing
d′ on top of d, so that node i′ of d′ coincides with node i of d.

Example 2.1.8. Figure 2.5 depicts the product of three basis diagrams from P5(∅).

=

Figure 2.5: An example of multiplication in P5(∅).

We now restrict our attention to a particular base ring, namely, let R = Z[δ], the
ring of polynomials in δ with integer coefficients.

Definition 2.1.9. Let DTL(An) be the associative Z[δ]-algebra equal to the quotient
of Pn+1(∅) determined by the relation depicted in Figure 2.6.

= δ

Figure 2.6: The defining relation of DTL(An).

It is well-known that DTL(An) is the free Z[δ]-module with basis given by the
elements of Tn+1(∅) having no loops. The multiplication is inherited from the multi-
plication on Pn+1(∅) except we multiply by a factor of δ for each resulting loop and
then discard the loop. We will refer to DTL(An) as the ordinary Temperley–Lieb
diagram algebra.
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Example 2.1.10. Figure 2.7 depicts the product of three basis diagrams from DTL(A4).
Note that this is the same product of diagrams as in Example 2.1.8, however, in this
case the three loops are replaced with the coefficient δ3.

= δ3

Figure 2.7: An example of multiplication in DTL(A4).

The next theorem describes the connection between TL(An) and DTL(An) shown
in [13] and [16].

Theorem 2.1.11. (Kaufmann, [13]) As Z[δ]-algebras, the Temperley–Lieb algebra
TL(An) is isomorphic to DTL(An). Moreover, each loop-free diagram from Tn+1(∅)
corresponds to a unique monomial basis element of TL(An). �

2.2 Decorated diagrams

We now describe the construction of diagrams whose edges carry decorations. We will
use the symbol •, which we refer to as a decoration, to adorn the edges of a diagram.
Let b = x1x2 · · ·xr be a finite sequence of decorations, where each xi = •. We say
that b is a block of decorations of width r. Note that a block of width 1 is just a
single decoration. The string • • • • • • • is an example of a block of width 7.

Ultimately, we have three restrictions (D0, D1, D2) for how we allow the edges of
a diagram to be decorated by blocks, which we will now outline. Note that we are
maintaining consistency with cases involving multiple decoration types as in [3], and
that a(d) is defined the same way as in type An. Let d be a fixed concrete pseudo
k-diagram and let e be an edge of d.

(D0) If a(d) = 0, then e is undecorated.
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In particular, the unique diagram de with a-value 0 and no loops is undecorated.
Subject to some restrictions, if a(d) > 0, we may adorn e with a finite sequence of
blocks of decorations b1, . . . ,bm such that adjacency of blocks and decorations of
each block is preserved as we travel along e.

If e is a non-loop edge, the convention we adopt is that the decorations of the
block are placed so that we can read off the sequence of decorations as we traverse
e from i to j′ if e is propagating, or from i to j (respectively, i′ to j′) with i < j
(respectively, i′ < j′) if e is non-propagating.

If e is a loop, reading the corresponding sequence of decorations depends on an
arbitrary choice of starting point and direction round the loop.

If a(d) 6= 0, then we also require the following.

(D1) We allow adjacent blocks on e to be conjoined to form larger blocks.

Definition 2.2.1. A concrete decorated pseudo k-diagram is any concrete pseudo
k-diagram with decorations satisfying (D0) and (D1).

Definition 2.2.2. We define two concrete pseudo decorated k-diagrams to be equiv-
alent if we can isotopically deform one diagram into the other such that any interme-
diate diagram is also a concrete decorated pseudo k-diagram.

Definition 2.2.3. A decorated pseudo k-diagram is defined to be an equivalence class
of equivalent concrete decorated pseudo k-diagrams. We denote the set of decorated
diagrams by Tk(•). Then define Pk(•) to be the free Z[δ]-module having the decorated
pseudo k-diagrams Tk(•) as a basis.

We define multiplication in Pk(•) by concatenating diagrams, conjoining blocks
and extending bilinearly (as in Definition 2.1.7). It follows from Section 3 of [3] that
the multiplication just defined turns Pk(•) into a well-defined associative Z[δ]-algebra.

Example 2.2.4. Here are a few examples.

1. The diagram in Figure 2.8(b) is an example of a decorated pseudo 5-diagram.
The decorations on the unique propagating edge can be conjoined to form a
maximal block of width 4.

2. The diagram in Figure 2.8(a) is another example of a decorated pseudo 5-
diagram, but with a-value 1. Note that the decorations can be conjoined to
form a block of width 3.

3. Figure 2.9 depicts the product of the diagram in Figure 2.8(b) and the dia-
gram in Figure 2.8(a).
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(a) (b)

Figure 2.8: Examples of decorated pseudo diagrams.

=

Figure 2.9: The product of two decorated pseudo diagrams

In type Dn, we also require the decorations to be “left exposed” (requirement
(D2)), a concept that appears in the context of the Temperley–Lieb algebra of type
B [9].

(D2) All decorated edges can be simultaneously deformed so as to take decorations
to the left wall of the diagram without crossing any other edges.

Remark 2.2.5. In type Dn we only need the decorations to be left-exposed, but some
types also require the decorations to be right-exposed—for example, the diagrammatic
representation of type C̃n in [3].

Definition 2.2.6. A concrete L-decorated pseudo k-diagram is any concrete decorated
pseudo k-diagram that also satisfies condition (D2).

Definition 2.2.7. An L-decorated pseudo k-diagram is defined to be an equivalence
class of equivalent concrete L-decorated pseudo k-diagrams. We denote the set of
equivalence classes from Tk(•) where representatives are concrete L-decorated pseudo
k-diagrams by TLk (•). Then define PLk (•) to be the subalgrebra of Pk(•) with TLk (•)
as a basis.

Note that “L” stands for “left” in the definitions above.
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Example 2.2.8. The diagram in Figure 2.8(a) is an L-decorated diagram, however,
the diagram in Figure 2.8(b) is not an L-decorated diagram since there are two edges
with decorations that cannot be deformed so as to take the decoration to the left wall
of the diagram without crossing another edge.

Remark 2.2.9. We observe that the product of two L-decorated pseudo k-diagrams
is a L-decorated pseudo k-diagram.

2.3 Diagrammatic relations

Our immediate goal is to define a quotient of PLk (•) having relations that are deter-
mined by applying local combinatorial rules to the diagrams.

Definition 2.3.1. Let P̂Lk (•) be the associative Z[δ]-algebra equal to the quotient of
PLk (•) by the relations depicted in Figure 2.10, where the decorations on the edges
represent adjacent decorations of the same block.

= δ = =

Figure 2.10: Defining relations of P̂Lk (•).

The third relation in Figure 2.10 means that any edge loses its decortation in the
presence of a decorated loop. Using the first and third relation, if there is more than
one decorated loop, then all loops are replaced with the coefficient δ except for one
decorated loop. The second relation ensures that no edge may carry more than one
decoration. Note that all of the relations are local in the sense that a single reduction
involves edges bounding the same region of the diagram.

Remark 2.3.2. The local diagrammatic relations for PLk (•) make it clear that L-
decorated diagrams with no undecorated loops having either exactly one decorated
loop and no other decorations or no decorated loops with edges having at most one
decoration form a basis for PLk (•).

Example 2.3.3. Figure 2.11 depicts the relations from Figure 2.10 applied to the
diagram from PL5 (•) in Figure 2.8(a).

Example 2.3.4. Figure 2.12 depicts multiplication of three diagrams from P̂L5 (•)
and Figure 2.13 shows an example where a decorated loop is present.
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Figure 2.11: Example of a diagram from P̂L5 (•).

=

Figure 2.12: Example of multiplication in P̂L5 (•).

=

Figure 2.13: Example of multiplication in P̂L5 (•) resulting in a decorated loop.

2.4 Simple diagrams

In this section, we define the diagram algebra DTL(Dn) as a certain subalgebra of

P̂Ln+1(•) that turns out to be a diagrammatic representation of TL(Dn).
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Define the simple diagrams d1, d1, d2, . . . , dn−1 as in Figure 2.14. Note that the

simple diagrams are elements of the basis for P̂Ln+1(•) (see Definition 2.3.1 and Re-
mark 2.3.2).

d1 = · · ·

d1 = · · ·

d2 = · · ·

...

dn−1 = · · ·

Figure 2.14: The simple diagrams of P̂Ln+1(•).

Remark 2.4.1. It is well known that d1, . . . , dn−1 generate the basis diagrams of
DTL(An−1). Moreover, if sx1 · · · sxk is a reduced expression for w ∈ FC(An−1), the
isomorphism of Theorem 2.1.11 maps the monomial basis element bw to the diagram
dw := dx1 · · · dxk .

Finally, we are ready to define the diagram algebra that we are ultimately inter-
ested in.

Definition 2.4.2. Let DTL(Dn) be the Z[δ]-subalgebra of P̂Ln+1(•) generated as a

unital algebra by d1, d1, d2, . . . , dn−1 with multiplication inherited from P̂Ln+1(•).
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Note that DTL(Dn) � P̂Ln+1(•) since the diagram in Figure 2.11, for example, is

in P̂Ln+1(•) but not in DTL(Dn).

Proposition 2.4.3. Each of the following relations is satisfied for DTL(Dn).

1. d2
i = δdi for all i;

2. didj = djdi if si and sj are not connected in the Coxeter graph;

3. didjdi = di if si and sj are connected in the Coxeter graph.

Proof. We will first consider only the diagrams without decorations, namely, d1, . . . , dn.
Then we will consider special cases involving decorations with d1.

1. We see that for i 6= 1

d2
i =

· · · · · ·

· · · · · ·

= δ · · · · · ·

= δdi,

since the loop may be replaced with the coefficient δ. In the case of d2
1
, we

see that

d2
1 =

· · ·

· · ·
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= δ · · ·

= δd1,

since two decorations on the same edge cancel each other, leaving an undec-
orated loop that is replaced with δ.

2. Without loss of generality, assume i < j and i, j ∈ {1, . . . , n − 1}. We see
that

didj =

· · · · · · · · ·

· · · · · · · · ·

= · · · · · · · · ·

=

· · · · · · · · ·

· · · · · · · · ·

= djdi.

In the case of d1dj when j > 2, we see that
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d1dj =

· · · · · ·

· · · · · ·

= · · · · · ·

=

· · · · · ·

· · · · · ·

= djd1.

Since s1 is not connected to s1, we will also consider the case of d1d1. We see
that

d1d1 =

· · ·

· · ·
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= · · ·

=

· · ·

· · ·

= d1d1,

since any edge loses its decorations in the presence of a decorated loop.

3. Without loss of generality, assume j = i + 1 and i, j ∈ {1, . . . , n − 1}. We
see that

didjdi =

· · · · · ·

· · · · · ·

· · · · · ·

= · · · · · ·

= di

31



Since s1 is only connected to s2 in the Coxeter graph, we will consider two
more cases. In the case d1d2d1, we see that

d1d2d1 =

· · ·

· · ·

· · ·

= · · ·

= d1,

since two decorations on the same edge cancel. Then, in the case of d2d1d2,
we see that

d2d1d2 =

· · ·

· · ·

· · ·

= · · ·

= d2,
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since two decorations on the same edge cancel.

�

The next proposition follows quickly from Proposition 2.4.3 since DTL(Dn) satis-
fies the relations given in Theorem 1.7.8.

Proposition 2.4.4. The map θ : TL(Dn)→ DTL(Dn) determined by θ(bi) = di is a
well-defined surjective Z[δ]-algebra homomorphism. �

In order to show that θ is an isomorphism, we need to first define D-admissible
diagrams.

2.5 D-admissible diagrams of type I and type II

It turns out that the set of D-admissible diagrams form a basis for DTL(Dn). Our
definition of D-admissible comes from Theorem 4.2 in [8].

Definition 2.5.1. Let d be an irreducible (i.e., no relations to apply) L-decorated
diagram. Then we say that d is D-admissible of type I or D-admissible of type II
depending on which of the two mutually exclusive conditions below it satisfies.

(I) The diagram contains one loop which is decorated, and no other loops or deco-
rations.

(II) The diagram contains no loops and the total number of decorations is even.

(a) Type I (b) Type II

Figure 2.15: D-admissible diagrams.

Example 2.5.2. Figure 2.15 shows an example of a type I diagram and a type II
diagram.

Proposition 2.5.3. (Green, [9]) In type Dn, the number of D-admissible diagrams
of type I is C(n)− 1, and the number of type II is 1

2

(
2n
n

)
. Therefore, the total number

of D−admissible diagrams is
(
n+3

2

)
C(n)− 1. �
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Proposition 2.5.4. (Green, [9]) The D-admissible diagrams form a basis of DTL(Dn)
and thus dim (DTL(Dn)) =

(
n+3

2

)
C(n)− 1. �

Theorem 2.5.5. (Green, [9]) As Z[δ]-algebras, the diagram algebra, DTL(Dn), is iso-
morphic to TL(Dn) under θ as defined in Proposition 2.4.4. Moreover, the monomial
basis for TL(Dn) is in natural bijection with the D-admissible diagrams. �
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Chapter 3

A cellular quotient

In this chapter, we construct a diagrammic representation of a quotient of TL(Dn)
that will be used to show that this particular quotient is cellular.

3.1 Pair-free Temperley-Lieb algebra

We will define the pair-free Temperley–Lieb algebra of type Dn, denoted T̂L(Dn), to
be the quotient of TL(Dn) with the additional relation b1b1 = 0. Since the monomial
basis forms a basis for TL(Dn) and the relation b1b1 = 0 eliminates the monomials
indexed by the type I heaps but has no impact on the monomials indexed by the type
II heaps, the following proposition holds.

Proposition 3.1.1. Let b̂w be the image of bw in the quotient T̂L(Dn). Then

{b̂w : H(w) is of type II} is a basis for T̂L(Dn). �

Note that if w ∈ FC(Dn) and no reduced expression of w has s1s1 as a subword,
the heap of w is of type II. In this case, we can safely identify b̂w with bw. We can
represent T̂L(Dn) in terms of generators and relations in a similar fashion to that of
TL(Dn).

Remark 3.1.2. The algebra T̂L(Dn) (n ≥ 4) is the unital Z[δ]-algebra generated by
b̂1, b̂1, b̂2, . . . , b̂n−1 with defining relations

1. b̂2
i = δb̂i for all i, where δ is an indeterminate;

2. b̂ib̂j = b̂j b̂i if si and sj are not connected in the Coxeter graph of type Dn;

3. b̂ib̂j b̂i = b̂i if si and sj are connected in the Coxeter graph of type Dn;

4. b̂1b̂1 = 0.
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3.2 Loop-free diagram algebra

We will now construct a diagram algebra that turns out to be a diagrammatic repre-
sentation of T̂L(Dn).

Definition 3.2.1. Let DT̂L(Dn) be the Z[δ]-algebra equal to the quotient of DTL(Dn)
with the additional relation given in Figure 3.1.

= 0

Figure 3.1: Additional defining relation of DT̂L(Dn).

Let d̂w denote the image of dw in the quotient. Since the relation in Figure 3.1 has
no effect on the type II diagrams, we can safely identify d̂w with dw when dw is of type
II and will use the same diagram to represent d̂w. Since d1, d1, . . . , dn generate the

type I and type II diagrams and each di is a type II diagram, it follows that DT̂L(Dn)
is generated by d̂1, d̂1, d̂2, . . . , d̂n−1.

Proposition 3.2.2. Each of the following relations are satisfied for DT̂L(Dn).

1. d̂2
i = δd̂i for all i;

2. d̂id̂j = d̂j d̂i if si and sj are not connected in the Coxeter graph of type Dn;

3. d̂id̂j d̂i = d̂i if si and sj are connected in the Coxeter graph of type Dn;

4. d̂1d̂1 = 0.

Proof. Since the first three relations hold in TL(Dn), the only relation left to check
is d̂1d̂1 = 0. We see that

d̂1d̂1 =

· · ·

· · ·
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= · · ·

= 0.

�

The next proposition follows quickly from Proposition 3.2.2 since DT̂L(Dn) satis-
fies the relations given in Remark 3.1.2.

Proposition 3.2.3. The map φ : T̂L(Dn) → DT̂L(Dn) determined by φ(b̂i) = d̂i is
a well-defined surjective Z[δ]-algebra homomorphism. �

Since the D-admissible diagrams form a basis for DTL(Dn) and the relation in
(3.1) eliminates the type I D-admissible diagrams but has no impact on the type II
D-admissible diagrams, the following proposition holds.

Proposition 3.2.4. The images of the type II D-admissible diagrams form a basis
for DT̂L(Dn). �

If d is a D-admissible diagram, then we say that a non-propagating edge joining
i to i+ 1 (respectively, i′ to (i+ 1)′) is simple if it is identical to the edge joining i to
i+1 (respectively i′ to (i+1)′) in the simple diagram di. That is, an edge is simple if it
joins adjacent vertices in the north face (respectively, south face) and is undecorated,
except when one of the vertices is 1 or 1′, in which case it may be decorated by only
a single decoration •.

Let w = sx1 · · · sxk be a reduced expression for w ∈ FC(Dn). Then d = dx1 · · · dxk .
For each dxi , fix a concrete representation that has straight propagating edges and
no unneccessary “wiggling” of the simple non-propagating edges. Now, consider the
concrete diagram that results from stacking the concrete simple diagrams dx1 , . . . , dxk ,
rescaling vertically to recover the standard k-box, but not deforming any of the simple
edges or applying any relations among the decorations. We will refer to this concrete
diagram as the concrete simple representation of dw.

Since w is fully commutative and vertical equivalence respects commutation, given
two different reduced expressions w1 and w2 for w, the concrete simple representations
dw1 and dw2 will be vertically equivalent (see Remark 2.1.5). We define the vertical
equivalence class of concrete simple representations to be the simple representation
of dw. The simple representation of dw is designed to replicate the structure of the
corresponding heap.
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Example 3.2.5. Let w = s1s3s2s1 be a reduced expression for w ∈ FC(D4). The
concrete simple representation of dw is shown in Figure 3.2 where the vertical dashed
lines in the diagram indicate that the two non-propagating edges are part of the same
generator.

=

Figure 3.2: Example of a simple representation.

Lemma 3.2.6. Let w be a reduced expression for w ∈ FC(Dn). Then the simple
representation of dw cannot have the configurations shown in Figure 3.3.

Proof. Let w be a reduced expression for w ∈ FC(Dn). If w has either configuration
in Figure 3.3, then w has si+1sisi+1 as a subword. Hence, w is not fully commutative,
which is a contradiction. �

Theorem 3.2.7. The type I and type II diagrams are indexed by the type I and type
II heaps, respectively.

Proof. Let w = sx1 · · · sxn be a reduced expression for w ∈ FC(Dn). Consider the
diagram dw = dx1 · · · dxn . If s1s1 is a subword of some reduced expression for w, then
it is obvious that dw is a type I diagram. Now assume dw is a type I diagram. Clearly,
s1 ∈ supp(w) since d1 is the only simple diagram that contains decorations. It is also
clear that dw contains only one loop, and hence, if s1s1 is a subword of w, then it only
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i i+ 1 i+ 2 i i+ 1 i+ 2

Figure 3.3: Impermissible configurations for a simple representation.

appears once. For dw to be a type I diagram, dw must contain one decorated loop.
Consider the occurence of s1 involved in the loop. Without loss of generality, assume
this occurence of s1 appears on the “top” of the loop in the simple representation for
dw. Since the configurations in Figure 3.3 cannot happen, there is no way for the loop
edge to wander through the simple representation unless the portion of the diagram
given in Figure 3.4 appears in the simple representation d(w). �

1 2

Figure 3.4: Portion of the simple representation from Theorem 3.2.7.

The following theorem follows quickly from Proposition 3.2.3 and Theorem 3.2.7.

Theorem 3.2.8. The diagram algebra, DT̂L(Dn), is isomorphic to T̂L(Dn) under
φ as defined in Proposition 3.2.3. Moreover, the image of the monomial basis for
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T̂L(Dn) is in natural bijection with the image of the set of type II D-admissible dia-
grams. �

3.3 Cellular algebras

Cellular algebras were introduced by Graham and Lehrer [7], and are a class of finite
dimensional associative algebras defined in terms of a “cell datum” and three axioms.
The axioms allow one to define a set of modules for the algebra known as cell modules,
and one of the main strengths of the theory is that it is relatively straightforward to
construct and to classify the irreducible modules for a cellular algebra in terms of
quotients of the cell modules.

Let d be a D-admissible diagram of type II for DT̂L(Dn). Remove all of the
propagating edges from d, then take the upper half and call it d. Invert the lower
half of d in a horizontal line and call this d. We call d and d half-diagrams. Then d
can be reconstituted from the ordered pair (d, d), written as d = d ◦ d, by inserting
the appropriate propagating edges. Note that if d has any progagating edges, then
whether the leftmost propagating edge is decorated is uniquely determined since we
know that the total number of decorations is even. If h is a half-diagram, then we
define a(d) and p(d) in the obvious way.

Example 3.3.1. Consider the two half-diagrams

h1 =

and

h2 =
,

then

h1 ◦ h2 =

We define h to be a sub-half-diagram of h′, as shown in Figure 3.5, if all non-
propagating edges of h′ are non-propagating edges of h. In this case, we write h ≤ h′.

The following definition of cellular algebra comes from [7].

Definition 3.3.2. Let R be a commutative ring with identity. A cellular algebra over
R is an associative unital algebra, A, together with a cell datum (Λ,M,C, ∗) where
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≤

Figure 3.5: Example of a subhalf-diagram.

1. Λ is a poset. For each λ ∈ Λ,M(λ) is a finite set such that

C :
∐
λ∈Λ

(M(λ)×M(λ))→ A

is injective with image equal to an R-basis of A.

2. If λ ∈ Λ and S, T ∈M(λ), we write C(S, T ) = Cλ
S,T ∈ A. Then ∗ is an R-linear

involutory anti-automorphism of A such that (Cλ
S,T )∗ = Cλ

T,S.

3. If λ ∈ Λ and S, T ∈M(λ), then for all a ∈ A we have

aCλ
S,T ≡

∑
S′∈M(λ)

ra(S
′, S)Cλ

S′,T mod A(< λ),

where ra(S
′, S) ∈ R is independent of T and A(< λ) is the R-submodule of A

generated by the set

{Cµ
S′′,T ′′ : µ < λ, S ′′ ∈M(µ), T ′′ ∈M(µ)}.

Example 3.3.3. Let Sn be the symmetric group on n letters. Then the group algebra
ZSn is cellular over Z. In this case, the poset Λ is the set of partitions of n, ordered
by dominance (meaning that if λ D µ, then λ ≤ µ). The set M(λ) is the set of
standard tableaux of shape λ, namely the ways of writing the numbers 1, 2, . . . , n
once each into a Young diagram of shape λ such that the entries increase along rows
and down columns. The element Cλ

S,T is the Kazhdan–Lusztig basis element C ′w such
that w ∈ Sn corresponds via the Robinson–Schensted correspondence to the ordered
pair of standard tableaux (S, T ). The map ∗ sends C ′w to C ′w−1 . For details on
standard tableaux, Young diagrams, and the Robinson–Schensted correspondence we
refer the reader to [17, Chapter 2].

The Hecke algebra H(An) was shown to be cellular by Graham and Lehrer in [7,
Example 1.2], and the underlying idea was already implicit in [14]. The example of
the symmetric group above is obtained simply by specializing q to 1, as was observed
by Graham and Lehrer in their treatment of the Brauer algebra [7].

We will now construct the cell datum (Λ,M,C, ∗) for DT̂L(Dn). Let Λ be the
set of symbols {1, 3, 5, . . . , n} when n is odd and {0+, 0−, 2, 4, . . . , n} when n is even.
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•n

•n− 2

•5

•3

•1

...

(a) n odd

•n

•n− 2

•4

•2

•0+ • 0−

...

(b) n even

Figure 3.6: Hasse diagrams for Λ.

We put a partial order < on these symbols by declaring that i < j if |i| < |j|, where
|i| = i if i is a natural number, and |0+| = |0−| = 0. The Hasse diagrams for the
posets Λ are shown in Figure 3.6.

If λ ∈ Λ, the set M(λ) has elements parametrised by the half-diagrams h arising
from D-admissible diagrams of type II with p (h) = |λ|. If p(d) = 0, then the diagram
d has to be reconstructed from two half-diagrams with the same parity. Hence, a half-
diagram h with no propagating edges will have the symbol 0+ if h has an even number
of decorations and 0− if h has an odd number of decorations. The anti-automorphism
∗ corresponds to top-bottom inversion of a D-admissible diagram of type II. The map
C takes elements h1 and h2 from M(λ) and produces the element C(h1, h2) which is
defined to be h1 ◦ h2.

Note that the identity element appears in the image of C.

Lemma 3.3.4. Let λ ∈ Λ and h1, h2 ∈ M(λ). If d = h1 ◦ h2, then for all simple
diagrams di, we have

did = εd′

for some d′ where ε ∈ {0, 1, δ} and h2 ≤ d′.

Proof. Since the multiplication of diagrams did preserves the non-propagating edges
in the north face of di and the south face of d, d′ must have at least the same non-
propagating edges as h2. So, h2 ≤ d′. If h1 has a non-propagating edge from node i to
node i+ 1 decorated with x ∈ {∅, •} (where ∅ denotes that the edge is undecorated),
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then

ε =

{
0, if x = • and i 6= 1

δ, otherwise.

If h1 does not have a non-propagating edge from node i to i+ 1, then ε = 1. �

Remark 3.3.5. The multiple ε does not depend on h2 and p(d′) ≤ p(d).

Let DT̂L(Dn) (< λ) be the submodule generated by diagrams with p-values less
than |λ|. Then the following lemma holds.

Lemma 3.3.6. Let d, d′ ∈ DT̂L(Dn). If p(d′) < p(d), then d′ ∈ DT̂L(Dn) (< λ),
where |λ| = p(d). �

Theorem 3.3.7. The algebra DT̂L(Dn) over the ring Z[δ] has a cell datum (Λ,M,C, ∗),
where the sets are given as above.

Proof. The proof is largely straightforward. The only nontrivial part is the verification
of axiom 3. Since DT̂L(Dn) is generated by the simple diagrams, it is enough to
multiply d by a simple diagram and hence axiom 3 follows quickly from Lemma 3.3.4
and Lemma 3.3.6. �

Since DT̂L(Dn) ∼= T̂L(Dn) as Z[δ]-algebras, the following corollary is immediate.

Corollary 3.3.8. The algebra T̂L(Dn) over the ring Z[δ] is cellular. �

3.4 Future work

We have shown that T̂L(Dn) is cellular by explicitly constructing a cell datum for

DT̂L(Dn). However, it remains to describe the corresponding cell datum for T̂L(Dn),
which may or may not be enlightening. As an application, we could utilize the
structure of the algebra to quickly compute µ-values (see Section 1.6) for pairs of

elements that index the basis of T̂L(Dn).
We have shown that a quotient of TL(Dn) is cellular, but we are uncertain if

TL(Dn) itself is cellular. This is likely known, but we are unable to find a reference.

Lastly, it is known that there is a connection between T̂L(Dn) and the so-called
blob algebra [15]. Future work could include making this connection more explicit.

43



Bibliography

[1] S.C. Billey and B.C. Jones. Embedded factor patterns for Deodhar elements in
Kazhdan–Lusztig theory. Ann. Comb., 11(3–4):285–333, 2007.

[2] D.C. Ernst. Non-cancellable elements in type affine C Coxeter groups. Int.
Electron. J. Algebra, 8:191–218, 2010.

[3] D.C. Ernst. Diagram calculus for a type affine C Temperley–Lieb algebra, I. J.
Pure Appl. Alg. (to appear), 2012.

[4] C.K. Fan. Structure of a Hecke algebra quotient. J. Amer. Math. Soc., 10:139–
167, 1997.

[5] M. Geck and G. Pfeiffer. Characters of finite Coxeter groups and Iwahori–Hecke
algebras. 2000.

[6] J.J. Graham. Modular representations of Hecke algebras and related algebras.
PhD thesis, 1995.

[7] J.J. Graham and G.I. Lehrer. Cellular algebras, 1996.

[8] R.M. Green. Cellular algebras arising from Hecke algebras of type Hn. Math.
Zeit., 229:365–383, 1998.

[9] R.M. Green. Generalized Temperley–Lieb algebras and decorated tangles. J.
Knot Th. Ram., 7:155–171, 1998.

[10] R.M. Green. Star reducible Coxeter groups. Glasgow Math. J., 48:583–609, 2006.

[11] R.M. Green and J Losonczy. Canonical bases for Hecke algebra quotients. Math.
Res. Lett., 6:213–222, 1999.

[12] J.E. Humphreys. Reflection Groups and Coxeter Groups. 1990.

[13] L.H. Kauffman. State models and the Jones polynomial. Topology, 26:395–407,
1987.

44



[14] D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke alge-
bras. Invent. Math., 53:165–184, 1979.

[15] P.P. Martin and H. Saleur. The blob algebra and the periodic Temperley–Lieb
algebra. Lett. Math. Phys., 30 (3):189–206, 1994.

[16] R. Penrose. Angular momentum: An approach to combinatorial space-time. In
Proceedings, pages 151–180, 1971.

[17] B.E. Sagan. The Symmetric Group: Representations, Combinatorial Algorithms,
and Symmetric Functions. Graduate Texts in Mathematics. Springer, 2nd edi-
tion, 2001.

[18] J.R. Stembridge. On the fully commutative elements of Coxeter groups. J.
Algebraic Combin., 5:353–385, 1996.

45


