

1

Streamlining Vegetation Analysis for
Environmental Impact Statements Using GIS

and Python Scripting

A practicum report by:
Clay B. Stephenson
Cbs332@nau.edu

Completed in requirements for the Degree of Master of Science in Geography,

 Department of Geography (Program of Study 2022-23)

&

Graduate Certificate in Geographic Information Systems,
Department of Geography (Program of Study 2022-2023)

Norther Arizona University (Online)

Flagstaff, AZ

Spring 2023

Advisor

Dr. Ruihong Huang

Committee Members:

Dr. David C. Folch
&

Dr. Erik Schiefer

Completed in cooperation with the Montana Department of Natural Resources and Conservation,
Forestry an Trust Lands Management Division.

mailto:Cbs332@nau.edu

2

Abstract

In the western US, state land management agencies will often manage their jurisdiction areas

for multiple uses, with timber management being a focus in northwest Montana. Forest management

aims to achieve multiple objectives, including the mitigation of wildfire risk, improving forest stand

health, preservation of wildlife habitat, providing recreation opportunities, and return of economic

value from forest products. When successful, the products of this management can include revenue for

state trust funds as well as funds to complete the rehabilitation of forest ground and landscapes leading

to increased sawlog volume production, reduced wildfire risk, and overall forest health. To complete

these management activities, environmental analysis is usually completed to document potential

impacts on the environment and provide an avenue for public involvement in land management that

fulfills agency objectives for lands that are an important resource. Quantifying potential impacts on the

vegetation structure of forest landscapes is time-consuming and requires a deep knowledge of forestry

and Geographic Information Systems (GIS) to complete basic analysis. In this practicum, a variety of

techniques were used to create an easily accessible and operational geoprocessing toolbox that forestry

practitioners can use to complete specific vegetation analysis for environmental processes like

environmental impact statements. The end goal for the geoprocessing toolbox was to decrease time

spent while completing vegetation analysis and to decrease potential inconsistencies in results from the

analysis completed by different team members. Upon completion, the resulting geoprocessing toolbox

was able to sufficiently reduce the amount of time required to complete the base amount of vegetation

analysis required for most environmental impact statements. In addition to making the vegetation

analysis process more succinct, the tools allow foresters to run multiple scenarios with alternative

proposed harvesting treatments to quickly see potential impacts to the landscape that they are

managing. Overall, the streamlined vegetation analysis toolbox allows foresters to complete required

environmental review more quickly, more accurately, and gives them the ability to develop stronger

alternatives for consideration in an environmental impact statement.

3

Table of contents

Abstract .. 2

Table of contents... 3

Introduction .. 5

Background behind environmental analysis/scope of project .. 6

Literature review ... 7

Problem statement/ research question ... 11

Objectives/goals .. 11

Overall workflow ... 13

Methods:... 15

Project area development & hypothetical unit creation ... 15

Data preparation tool .. 19

Forest habitat group type tool ... 25

Desired future condition tool ... 27

Current cover type tool.. 30

Forest age class tool .. 34

Forest old growth tool ... 37

Age and cover type patch size tool... 41

Methods summary .. 46

Tool outputs and discussion .. 48

Data preparation results .. 48

Forest habitat group results ... 51

Desired future condition results .. 53

Current cover type results ... 54

Forest age class results .. 57

Forest old growth results ... 59

Age and cover type patch size results .. 64

Spatial analysis issues and opportunities ... 74

Conclusion ... 76

References .. 78

Data citations .. 80

4

Appendix A: Data dictionary reference .. 81

Reference table 1: Data dictionary table .. 81

Appendix B: Timber inventory attribute fields dictionary ... 86

Reference table 2: Attribute dictionary table ... 86

Appendix C: Vegetation analysis workbook reference .. 92

Appendix D: Geoprocessing tools Python script reference ... 103

Geoprocessing tool Python script 1: vegetation analysis data prep .. 103

Geoprocessing tool Python script 2: Habitat type group analysis (current condition) 108

Geoprocessing tool Python script 3: Desired future condition analysis (current condition) 109

Geoprocessing tool Python script 4: Current cover analysis (current condition and post treatment

condition) .. 110

Geoprocessing tool Python script 5: Forest age class analysis (current condition and post treatment

condition) .. 114

Geoprocessing tool Python script 6: Forest old growth analysis (current condition and post treatment

condition) .. 118

Geoprocessing fool Python script 7: Age class patch size analysis... 124

Geoprocessing tool Python script 8: Cover patch size analysis.. 129

5

Introduction

The landscape in the mountainous region of northwestern Montana largely consists of a variety

of forested stands, surrounded by steep rocky mountain peaks at higher elevations, and grassy timbered

valleys at lower elevations. The Swan Valley, located in this region, contains landowners of all types,

ranging from federal and state governments, as well as private entities. Historically the Swan Valley has

undergone change through forest management projects, prescribed fire, as well as natural disturbances

in the form of wildfires. The state government in Montana has experienced and been a part of this

change since the divestment of certain state lands from the federal government when Montana became

a state in 1889 as part of the Omnibus Enabling Act (Wiles, 2017). Because of this act, Montana was

granted sections sixteen and thirty-six in every township to support the common schools (Wiles, 2017).

When these sections were otherwise unavailable at the time of the Enabling act, other sections were

selected in lieu of these lands (Understanding Trust Lands, 2023) and some land was blocked to

create management areas known as state forests. The Swan River State Forest was designated in 1925 in

the Swan Valley and over many years and changes, the governing body of these Common Schools’ lands

became the Montana Department of Natural Resources and Conservation (DNRC) (Stockwell, 2013).

The mission of the DNRC in the Swan Valley is to sustainably generate revenue for the Common

Schools’ Trust Fund while completing forest improvement projects like forest regeneration, pre

commercial timber thinning, and infrastructure improvement. To complete forest management projects

that could have potential effects on the environment, DNRC is required to follow the Montana

Environmental Policy Act (MEPA) and the State Forest Land Management Plan (SFLMP) by completing an

environmental review of proposed projects. This generally takes the form of environmental assessments

(EAs) and Environmental Impact Statements (EISs) within the DNRC. This type of environmental review

gives project leaders and Interdisciplinary teams (ID teams) of forest practitioners the chance to interact

with the public and ensure that environmental issues are being considered in the development of forest

management projects.

On an individual project level, ID team members are faced with deadlines that make it difficult

to complete the required fieldwork and data processing that is required for a quality environmental

analysis. Most of the preparation time for an EIS is spent collecting data in the field and completing

vegetation analysis by manipulating the data with individual geoprocessing tools and resulting summary

tables. Using GIS, spatial analysis, and Python scripting, this project will create ways to quickly

6

summarize, and complete analysis based on potential forest management activities set by ID team

members. The practicum will result in a geoprocessing toolbox that ID team members can utilize to help

them streamline vegetation analysis. Though ID team members might want to tweak analysis in future

projects, the project intends to allow them to consistently complete vegetation analysis efficiently which

would free up more time to develop other aspects of the environmental process.

Background behind environmental analysis/scope of project

The Swan River State Forest covers approximately 56,000 acres adjacent to other management

agencies and the potential effects of management must be analyzed following MEPA. To complete

environmental analysis on a proposed forest management project in Montana, a forestry-focused

project leader, and experts in wildlife, hydrology, soils, and forest/environmental policy gather to form

an ID team. In the initial stages of project development, the project leader utilizes aerial photography,

geographic information systems (GIS)1, and geospatial data2 to determine where to begin

reconnaissance on forested stands. Walkthrough forest stand data is then collected and fed into a

timber inventory dataset that shows current conditions within the stand. Once current conditions are

established, potential alternative forest management treatments can then be developed. Multiple

treatments can be identified for varying alternatives based on the constraints set by the decision maker,

as well as issues brought forth from the public involvement process. When alternative treatments are

identified, current and post-harvest vegetation conditions are completed to document potential

environmental effects.

Because managed forest landscapes are dynamic, this analysis is time-consuming to complete

and requires great attention to detail to ensure that an EIS is factual and produces the best picture of

potential environmental effects. Information can change from one iteration of treatment to the next

which can lead to inconsistencies in the summary of changes to post-treatment conditions between

alternatives. To minimize these inconsistencies and make analysis more efficient, Python scripting can

be utilized to create a custom vegetation analysis toolbox. With tools from this toolbox, ID team

1 Geographic information systems (GIS): a system that creates, manages, analyzes, and maps all types of data (Esri,
2023a).
2 Geospatial data: data that typically combines the location and attributes information about characteristics of an
object.

7

members can define multiple alternative treatment inputs and the resulting summary tables and

changes to the environment can be computed automatically.

 This project created the vegetation analysis toolbox with the intent to give basic users of GIS and

forestry professionals an easy-to-use toolbox where no knowledge of Python scripting would be needed.

This allows users to execute complex and interrelated vegetation analysis that would normally be

carried out by hand.

Literature review

The following literature review describes the intent of the project and backs up some of the core

concepts that will be utilized during the creation of the vegetation analysis toolbox/ geoprocessing tools.

It focuses on aspects of how and why efficiency can be found by using scripting tools for spatial analysis

as well as the importance of good data management and documentation. Aspects of forest

management must also be addressed even though the central theme of this report is on the creation of

the tools themselves, and key points are shown for why and how forest attribute data is manipulated by

the geoprocessing tool.

GIS and Python scripting language coupled together provide a platform that increases the

efficiency of spatial analysis. Esri ArcGIS version 10 has been fully integrated with Python scripting using

the arcpy site package (Rees, 2014) and gives GIS users the ability to create Python scripts for custom

geoprocessing tools. This site package contains support and functions for individual geoprocessing tools

that would normally be completed individually by hand through the ArcGIS Desktop or ArcGIS Pro

interface. In 2000, Python 2, a coding language originally developed in the 1980’s was released and

intended to be utilized a simple and easy to use language for web development, data

management/machine learning, and build efficiency into computer aided workflows (Saabith et al.,

2019). Saabith et al., (2019) also explains that in 2008, Python 3 was released with intention of removing

duplicate programming constructs and modules so that there would be one “obvious” way to complete

workflows. Though ArcGIS version 10 was fully integrated with the Python scripting language, ArcGIS Pro

utilizes the Python 3 scripting language and the geoprocessing tools created in this project will not be

backwards compatible with ArcGIS desktop version 10.x (Esri, 2023b). The ability to create custom tools

for specific processes was the basis for increasing the efficiency of vegetation analysis. For this project,

the ArcGIS Arc Pro script tool was used where user input parameters could be defined and run through a

8

Python script that outputs the desired analysis. To many forestry practitioners, it is often hard to

determine how to start when utilizing GIS for spatial analysis. Some practitioners Have a basic

understanding of how analysis is completed, but clarity of mission and training is not always available

when moving from an operational position to an analyst position. This can be attributed to the rapid

change that GIS has undergone in recent years and the need for users to adapt GIS to meet their needs

on the ground (Ricker et al., 2020). Practitioners can get caught up in thinking at the individual project

level, and it takes time to understand which geoprocessing tools are appropriate to complete analysis.

Utilizing Python scripting for vegetation analysis and strategic planning is possible and allows for a

reduced need for manpower to input and manage the data (Standovár et al., 2016). Custom

geoprocessing tools can also be created that can handle tasks specific to an organization (Pimpler,

2015). By using the techniques described by Pimpler and those gained through general forestry practice,

vegetation analysis for environmental processes can be created.

When completing complex processes like environmental analysis, GIS can be applied as a tool,

and initial Interdisciplinary (ID) team composition must be discussed to ensure teams have the

necessary skills to achieve the intended goals of the project (Ricker et al., 2020). Because the traditional

forestry focused ID team members are leading development of EIS’s on the Swan River State Forest, a

certain level of expertise in forestry can be expected for end users of the resulting geoprocessing tools.

Ricker et al. (2020) also explains a difference between three types of GIS users that fit well with the

project; the GIS tool user, the GIS toolmaker, and the GIScientist. Those that can navigate the GIS

environment and implement processes that are developed by both the GIS tool maker and GIScientist is

recognized as the GIS tool user. This project aims to create a product that can be easily utilized by the

GIS tool user. A product of data and method documentation can give the GIS tool user the reference

materials needed to understand why the tool is being produced and will create a jumping off point for

further development of custom geoprocessing tools in the future. GIS for forest management can also

be incorporated into a strategic planning and modeling process that involves making predictions about

what the future forest will look like relative to management activities, and future development is

needed to support choices in resource allocation (Sonti, 2015). In addition to using GIS to create

geoprocessing tools designed to complete analysis, foresters and ID team members must understand

why environmental analysis must be carried out in the state of Montana, the characteristics of forest

attributes and the data that the tool is manipulating, as well as the documentation and organization of

the data once the tool is utilized.

9

As technology advances and subdisciplines of science become more defined, several efficiencies

could be created for traditional workflows that would once be impractical or impossible. A core goal of

this project was to create a workflow for ID team members that would allow them to increase the

consistency of required vegetation analysis using custom geoprocessing tools. This goal can be broken

down into two varying concepts of reproducibility and replicability. Reproducibility is defined as

obtaining consistent results using the same input data; computational steps, methods, and code; and

conditions of analysis (National Academy of Sciences, 2019). The National Academy of Sciences (2019)

also defines replicability as obtaining consistent results across studies aimed at answering the same

scientific question, each of which has obtained its own data. For the purposes of this project,

reproducibility is the end goal, where members of an ID team can utilize the same data and workflow

process with the geoprocessing tools that result in consistent change in acres for desired forest attribute

types. Replicability, though not directly examined in this project, can also be tested in the future where

similar workflow can be implemented in a different study area and trends in the forest attribute acres

can be examined. The expected result for reproducibility in this project would be to get the same exact

acres of classified forest attribute after the analysis is completed by the vegetation analysis toolset,

regardless of who is running them. In the future, the expected result for replicability would be that

examiners could recognize the same trends of change in acreage when using the vegetation analysis

toolset, regardless of the state land that the toolset is being completed on.

This project also aims to incorporate ideas to increase the level of access and usability of data to

augment the decision-making process for forest management on the ground. It is key in analysis where

reproducibility is a primary objective, that good data management must overcome obstacles where

designed workflows and the data used within those workflows are inappropriately described and

managed so that future “users” would not be able to use them without great effort. The concept of the

findable, accessible, interoperable, and reusable (FAIR) guiding principles is described where data, code,

and workflows must be clearly described with adequate metadata, be open and universally

implementable, use broadly applicable language, and be released with a clearly described attributes

(Wilkinson, 2016). Foresters at a state level have access to custom datasets that contain in-depth

attributes about forest inventory, health, and other factors that may be affected by intended forest

management. Often this type of data is utilized multiple times and is produced by one individual and

used by another in an environmental analysis setting (Kim, 1999). Because vegetation analysis requires

10

foresters and analysts to quantify changes to acreage, there is potential for multiple copies and trials of

datasets to be created, as GIS tool users work their way through alternative development. FAIR data

management guiding principles can be included in this project through the use of good data

management and documentation through metadata. This ensures that data is not misused and allows

GIS tool users to understand the history and intent of the data they are manipulating (Kim, 1999). As

project complexity increases and multiple scenarios are generated, proper documentation will provide a

better understanding of the data, and how that data can be utilized in the future (Kim, 1999).

The Montana DNRC follows the Montana Environmental Policy Act (MEPA) to complete forest

management projects that generate revenue for state-owned trust funds. The most common on the

Swan River State Forest being the Common Schools Trust Fund which provides revenue to the K-12

school system in Montana. MEPA has been described as an innovative provision for environmental

impact statements on “major actions of state government significantly affecting the quality of the

human environment” (Stockwell, 2013). In short, a provision adhering to guidance from MEPA requires

ID team members to quantify potential effects on the forested landscape because of direct forest

management. Alternative actions for management must be developed, and relevant and accurate

descriptions of the affected environment should be provided (Stockwell, 2013). This guiding policy

provides the background for why foresters and ID team members must quantify potential changes to

the environment as a result of forest management activities.

To adhere to MEPA and the effects of forest management on the environment, this project

looked at common types of vegetation analysis used in previous forest management environmental

impact statements. The change in forest attributes detailed in this research can be adapted to different

types of vegetation analysis based on the needs of the ID team and the data available at the time.

Vegetation analysis generally consists of describing the structure, development, distribution, and

definition of plant communities (Causton, 1988). These types of analysis can be described easily using

GIS that include strategic planning, map production, fire management, harvest planning and resource

management through forest inventory (Sonti, 2015). The forest attribute data used in this project

describes what characteristics of forested stands have been measured and the post treatment changes

are easily quantified by the change in acreage that are represented by these characteristics. The project

aimed to use a quantitative approach in that forest changes can qualitatively described but the acreage

11

of these measures is reported in environmental analysis, and any forest attributes from the state’s

forest attribute data can be used specifically for this type of analysis.

This literature review is aimed to highlight important aspects of the project that will be

considered in the following methodology and should be implemented when GIS tool users go to run the

geoprocessing tools created in this project. Moving forward, more research could be conducted on

utilizing remote sensing and other forest data collection techniques to quantify attributes of the

landscape. Scripts created in this project could then be modified to utilize these new datasets with the

intent of creating an updateable and dynamic geoprocessing tool that can be used for future

environmental impact statement analysis. Each study has merit, but for the time being, vegetation

analysis using Montana’s timber inventory must be completed to serve as a starting point for more

complex analysis that utilizes different data sets in the future. To complete this research, the following

methods will be implemented, and results shared.

Problem statement/ research question

How can forestry-focused members of an interdisciplinary team (ID team) efficiently streamline

vegetation analysis for complex environmental impact statements before forest management?

Objectives/goals

This project is designed to accomplish the following objectives for foresters and ID team

members working on an environmental impact statement anywhere on state trust lands within the state

of Montana where state forest inventory data is available.

a. Reduce the amount of analysis that needs to be completed by hand by team members.

b. Create a toolbox that produces desired summary tables, and feature classes for acres of

change of appropriate forest attributes post-harvest conditions.

c. Create a document that details the workflow/processes behind vegetation analysis.

d. Create a document that details adequate collection of data and what is expected for a

data freeze3.

3 Data freeze: in the context of this project, a data freeze is any dataset that is inherently dynamic but must be
static for use in the created geoprocessing tools. An example of this would be a standard forest inventory;

12

To effectively complete the above objectives and streamline analysis for an environmental impact

statement, six forest attributes will be examined and utilized to create custom geoprocessing tools.

Python scripting and the ArcGIS script tool will be used to create and export data tables describing the

current condition and post-harvest conditions for user specified areas within the Swan River State Forest

(SRSF). Though there are countless forest attributes that can be considered when examining post-

treatment effects of forest management, this project will only look at attributes that are consistently

examined with environmental impact statements on the SRSF. Though these tools were developed with

a case study on the SRSF, the resulting geoprocessing tools are intended to be utilized on any major

state vegetation analysis project. It should be noted that analysis for an EIS is driven by public

comments and objectives are set by a decision maker. It is out of the scope of this project to develop a

tool that is dynamic enough to take into consideration different forest attribute analyses because of

issue development at the public scale. The chosen attributes are commonly analyzed at the ID team

level due to their importance in forest structure and often these analyses address common responses

received from public comment. Future development of the resulting geoprocessing tool and Python

scripts will be needed to incorporate a more flexible level of analysis to include potential issues that are

brought forward from public comment. The expected result for the project is to produce a tool that can

provide consistency and reproducibility of vegetation analysis for future EISs. These geoprocessing tools

will be useful to state land managers and ID team members while serving as a baseline for forest stand

vegetation analysis that can then be modified and added to in the future to facilitate new and Important

analysis.

Summaries of the following six forest attributes4 will be exported to Excel tables describing the

current condition and post-harvest conditions for specifically identified project areas within the SRSF.

1. Forest habitat type group

2. Desired future forest condition

3. Current forest cover type

Generally, forests change at some scale, but analysis must be carried out on a static snapshot of forest conditions.
All input datasets must be part of the data freeze to ensure accurate results.
4 Individual forest attributes are described in the methods section of this report, and a succinct list of attribute
fields can be found in Appendix A and Appendix B at the end of this report. Data documentation and sources can
be found in Data Citation section at the end of this report.

13

4. Forest age class

5. Forest old growth

6. Age and cover type patch size

As an added goal there is an expectation that when the toolbox is complete, ID team members will

be able to run spatial analysis multiple times to show potential effects to the forest environment when

determining management alternatives for the project. These scenarios will provide an opportunity for

foresters to experiment, recognize patterns, and more closely adhere to objectives set by the decision

maker as they alter forest management practices within the scope of the environmental impact

statement. Inconsistencies will be minimized by reducing the process to defining input datasets only.

This will give a more methodical nature to vegetation analysis and will allow practitioners to spend more

time out on the landscape where they can build a more holistic understanding of the ground they are

managing. The result is expected to be a more informed decision for forest management treatment on

the ground.

Overall workflow

Before describing the overall methods used to complete this project, a basic workflow for

environmental impact statement vegetation analysis was created. This workflow serves as a roadmap

for completing analysis both by hand, and when utilizing custom geoprocessing tools created in this

project. The second workflow shows the difference in completing analysis by hand and when utilizing

the streamlined vegetation analysis. This is the intended workflow for completing analysis. Detailed

workflows for how the tools are shown in the methods section.

14

Figures above show basic workflow to follow for environmental impact statement. Streamlined vegetation analysis follows the same workflow

as analysis by hand but will do so with Python scripting and only require end users to input cumulative and direct effects updated timber

inventories and alternative treatment units.

15

Methods:

To complete this project, several geoprocessing tools were developed to streamline the vegetation

analysis for environmental impact statements on the Swan River State Forest. The tools were created in

the ArcGIS Pro environment and their uses were intended as follows:

1. Vegetation analysis data prep: Prepared data for use in further geoprocessing tools

2. Forest habitat type group to Excel: Summarized the change in acreage based on management

type. Outputs to an Excel file.

3. Desired future forest condition to Excel: Summarized the change in acreage based on

management type. Outputs to an Excel file.

4. Current forest cover type to Excel: Summarized the change in acreage based on management

type. Outputs to an Excel file.

5. Forest age class to Excel: Summarized the change in acreage based on management type.

Outputs to an Excel file.

6. Forest old growth to Excel: Summarized the change in acreage based on management type.

Outputs to an Excel file.

7. Age and cover type patch size to Excel: Summarized the change in acreage based on

management type. Outputs to an Excel file.

Each of these geoprocessing tools were created to run independently of each other and output the

desired results into a user specified file location. This allowed end users to develop and run unique

scenarios that affected changes in acreage of forest attributes. The intended result in a real analysis

process would allow foresters and ID team members to change recommendation of treatment based on

the outcome of the geoprocessing tools. Each of these tools were created and described in this methods

section of the report.

Project area development & hypothetical unit creation

Forested landscapes of northwestern Montana are generally dynamic, and data for individual

project areas show snapshots of what the landscape looked like at the time of collection. In this

research, historical datasets like the state of Montana’s forest inventory were utilized to complete the

analysis. To begin, two areas of interest were identified and used in this project for analysis. This closely

follows Swan River State Forest protocol where a larger area is examined for potential effects to a

16

cumulative environment, and a finer look at potential effects at a smaller project area level. To complete

this, a cumulative effects area (CumulativeEffects_Boundary_202302215), was created that included all

acreage (both State owned and adjacent ownerships) within the confines of the SRSF boundary. A direct

effects area (DirectEffects_Boundary_202302215) was then created that was roughly centered within

the SRSF and followed major road systems traditionally utilized by logging traffic and the north and

south bounds of the SRSF boundary. The direct effects project area was chosen to cover a variety of

forested stands, that contained all attributes available within the timber inventory dataset. Creation of

the direct effects project area also considered normal operations of forest management projects by

following the bounds of existing road systems and is shown in the map below (Map 1). Both project

areas were selected to mimic standard preparation practices for project development that foresters and

ID team members would carry out prior to vegetation analysis on an EIS.

To easily compare the results of a traditional analysis workflow and the streamlined workflow

created in this project, hypothetical incomplete timber sale units (Incomplete_Units_202302215) were

created. Proposed alternative Alpha and Beta units (PTU_AltA20_230221, PTU_AltB_202302215) needed

to be created as well to test the resulting geoprocessing tools. The incomplete timber sale units

represent open or incomplete timber sales that would be currently under contract that might have a

potential effect on current condition of forest structure once the sales are finished but before the life of

the current EIS would expire. The incomplete sale units were selected by creating a point in the ArcGIS

Pro and using the buffer tool to set the circle’s radius to 7,398.6 feet. By using the buffer tool and setting

the circles radius as the buffer distance, a perfectly circular incomplete timber sale unit was created with

an area of 100 acres. It should be noted that any polygon shape could be utilized when running the

tools and it is expected that foresters would create irregular treatment areas to follow stand boundaries

and features on the ground. The size, shape, and orientation of the incomplete timber sale units do not

affect the performance of the geoprocessing tools. Ten, 100-acre circular units were created this way

and then distributed across the landscape to include only forested areas. Incomplete timber sale

locations were also selected to be completely within the cumulative effects analysis area, but outside of

the direct effects analysis area. Once the incomplete timber sale units were positioned, key attributes

were added including a silvicultural prescription, cutting unit number, and insect and disease risk rating.

These fields coincide with state proposed timber sale units (PTU’s) and utilize the same domain as the

5 Feature Class used as Geoprocessing Input, See Appendix A for details on data and Appendix B for details on
attribute fields used in Python scripts.

17

PTU’s to ensure that the geoprocessing tools could be utilized for live state data later. Incomplete

timber sale boundaries are always included when preparing data for vegetation analysis in traditional

workflows.

The alternative Alpha and Beta units were then created and represent forest treatment projects

that would be traditionally proposed by foresters. The same methodology of creating the 100 acre circle

units in the incomplete timber sale units for the alternative Alpha and Beta treatment areas was

followed, and each of these units fell completely within the direct effects analysis area. Locating these

proposed treatment units this way follows a real-world example of how units would be located, apart

from the circular units not generally falling along stand boundaries. For this report, these circular areas

give a quick visual representation of how the geoprocessing tools behave after geoprocessing is

complete. These areas provided a baseline for vegetation analysis and are the source for potential

effects on the environment within the cumulative effects and direct effects areas. The incomplete units,

alternative Alpha units, and alternative Beta units were created with the intention of being input

datasets for the Initial data freeze, as well as the suite of vegetation analysis geoprocessing tools from

this project.

The creation of hypothetical units was intended to follow a similar process that foresters and ID

team members would follow to complete the very initial stages of project development. During a non-

hypothetical project, the units can vary greatly from project inception and might not fall within the

parameters set by the project leader, or decision maker. The ID team would then need to go through the

analysis to ensure that the total acres that were proposed match the total acres being treated within the

project area. There is opportunity to increase the efficiency and robustness of the geoprocessing tools

to account for these errors, but for this project and to immediately utilize the proposed tools, ID team

members using the veg analysis geoprocessing toolbox will need to ensure that their units fall

completely within the direct effects and cumulative effects project areas and that their units do not

overlap. This could cause discrepancies in reported acres when adding up acres of treatment units, but

the geoprocessing tools would not account for the overlapped acreage.

18

Map 1 shows the cumulative effects and direct effects project area for the streamlining vegetation analysis project. Areas within the cumulative

effects area consist of state ownership and adjacent landowners including private, United States Forest Service, and Montana Fish Wildlife and

Parks. Analysis was only conducted on state ownership areas.

19

Data preparation tool

The Swan River State Forest is unique among state managed forest land in that it is one of three

blocked up management “State Forests” that is managed exclusively for the sustained economic benefit

to state owned trusts. The forest is under constant change due to forest management and timber

harvest activities, and generally those activities are planned, and environmental analysis is completed

on a three-year cycle before the next round of projects are analyzed for. Before analysis for the next

forest management cycle can begin, some preparation of the input dataset

(Timberinventory_20220223) must be prepared so that forested stands on the landscape represent the

most up-to-date potential attributes. These forest attributes would be changed due to these previous

forest management activities. This preparation accounts for current forest management projects that

are under way but have not been completed where the effects of this harvest would then be input into

the timber inventory dataset.

The baseline timber inventory dataset6 was downloaded from a state server to a local file

geodatabase that contains all input datasets for the geoprocessing tools. Notes were added to the

metadata detailing the date of download and set use limitations to ensure that future users would know

the proper use of the data as shown in figure 1. It should be noted that the described metadata process

was followed for all input datasets, as well as all created datasets from custom geoprocessing tools. Not

every metadata alteration was noted in each methods section from here after. Additionally, the Python

script in the tools does not update the metadata automatically, and it is up to the user to identify when

it is appropriate to complete the final metadata update. In order to continue to implement a FAIR

guideline for data management, future iterations of these geoprocessing tools can incorporate

metadata information that is coded into the embedded scripts that will automatically update created

feature classes metadata to describe the process that was carried out in the tool itself.

6 A vector based multi polygon dataset that contains forest attributes contained within each of the polygons.
Detailed information on the dataset can be found in Appendix A.

20

Figure 1 shows a sample metadata for input datasets. As datasets are downloaded, manipulated metadata must be edited to reflect the

changes being made to the dataset and the intended use of the resulting changes.

21

After downloading the dataset, a Python script was created in a central custom toolbox called

Veg_Analysis.atbx using the ArcGIS Pro script creation tool. The basic workflow of the Python script is

shown in the conceptual model in figure 2 below.

22

Figure 2 shows how timber inventory and proposed harvest units are manipulated before using the data in vegetation analysis. Raw data outputs (Shown by the blue circles) will be the basis for inputs in all vegetation

analysis tools.

23

A general name, label name, and toolbox description were created which were then stored in the

metadata for the tool itself. Five user input parameters were defined for the tool and were detailed as

follows:

• Direct effects project area (project area): User input, data type: feature layer. Intended to be

the (DirectEffects_Boundary_20230221) input dataset.

• Cumulative effects project area (analysis area): User Input, data type: feature layer. Intended

to be the (CumulativeEffects_Boundary_20230221) input dataset.

• Timber inventory: User input, data type: feature Layer. Intended to be the

(Timberinventory_20230103) input dataset.

• Incomplete sales: User input, data type: feature layer. Intended to be the

(Incomplete_Units_20230221) input dataset.

• Output location (enter project name): User input, datatype is feature class. Allows users to

input descriptive text showing script run number or other. For this project input followed level 1

of naming convention7. Also allows user to select file geodatabase location for output datasets

of the tool.

• Input date: User input, data type is date. Allows users to select date of run for the

geoprocessing tool. User selects date from calendar feature.

Once user inputs were defined, a Python script was written in the execution window of the ArcGIS

Pro scripting tool properties as shown in Appendix D: Geoprocessing Tool Python Script1. The Python

script functions by first taking the user input parameters for date and restructuring the characters of the

resulting string to create a variable that implements the level 3 naming convention8. The tool clips the

timber inventory datasets to the cumulative effects project area and producing the

(ResultsRun_CEtimberinvnetory_20230221) feature class. By using this resultant feature class in further

portions of the script it was ensured that further geoprocessing tool runs only were looking at timber

inventory data within the desired project areas.

The resulting cumulative effects timber inventory was then passed to a delete field function

where attribute fields that would not be utilized in further analysis were deleted. This process made it

easier to inspect the resulting feature classes attribute table and minimized the potential for incorrect

7 Level 1 of naming convention requires user’s initials. See naming convention found in Appendix A.
8 Level 3 of naming convention requires user’s run date. See naming convention found in Appendix A.

24

fields to be summarized later. A union function was then completed between the incomplete timber

sales input and the cumulative effects area timber inventory which maintains the extent, boundaries,

and attributes of both feature classes, and a resulting feature class called

(ResultsRun_UpdatedCETimberinventory_20230221) was created.

Once the updated cumulative effects timber inventory feature class was created, it was then

utilized to make a temporary feature layer. A where clause was implemented when creating the feature

layer to select specific incomplete timber sale silvicultural treatments that would affect post-harvest

condition. The calculate field function was then used to calculate the appropriate attribute field to a

new value that would represent the appropriate post-harvest conditions. Domains were enforced to

ensure that coded value fields would return easy to understand text strings in the attribute table after

the tool was completed. The silvicultural prescription descriptions and the forest attribute alterations

are described in detail in Appendix C: Vegetation Analysis Workbook Reference. Because the make

feature layer functions were passed the ResultsRun_UpdatedCETimberinventoryory_20230221 dataset

every time a new calculate field method was required, the updated cumulative effects timber inventory

dataset attribute fields were updated, and the final feature class is overwritten in the user selected file

geodatabase. Temporary feature layers are not written to the disk and are not saved after script is ran.

The feature class shows all the potential harvest effects on timber inventory within the cumulative

effects analysis area based on the silvicultural prescriptions of the incomplete timber sale units.

To finish off the vegetation analysis data prep geoprocessing tool, the final updated cumulative

effects timber inventory dataset needed to be passed to another clip function that clips the feature class

to the direct effects project area polygon. The direct effects area should always be smaller than the

cumulative effects project area and will always fall within the confines of the Swan River State Forest

boundary. At a state level, the same methods should be utilized, where the cumulative effects area is

always larger and completely contains the direct effects project area. Traditionally this is checked at the

ID team level before analysis begins. Any incomplete timber sale units will generally not be under the

new direct effects area. By waiting until after all harvest updates are complete, the clip function for the

direct effects area represents the most up to date timber inventory available. The vegetation analysis

data prep tool results in two unique feature classes that were input into further geoprocessing tools as

described below:

25

• Cumulative effects updated timber inventory: Tool output, data type: feature layer.

Intended to be used for inputs into further summary table geoprocessing tools.

(ResultsRun_UpdatedCETimberInventory_20230221) input dataset.

• Direct effects updated timber inventory: Tool output, data type: feature layer. Intended

to be used for inputs into further summary table geoprocessing tools.

(ResultsRun_UpdatedDETimberinventory_20230221) input dataset.

From here on, users will now be able to run any combination of the following geoprocessing

tools created by the project. For the resulting feature layers to be compatible with further processing

tools, the silvicultural treatment field (Rx) was deleted from the feature classes so that new treatment

units can be added later with an Rx field and change in forest attributes can be quantified. This is the

result of the input incomplete timber sale units utilizing a common silvicultural prescription name as

state PTU’s. Results of running this tool are described in the results/discussion section of this report.

Once the data prep phase is complete the newly created feature classes above can be utilized as input

parameters for the six vegetation analysis geoprocessing tools.

Forest habitat group type tool

For environmental impact statements, foresters and ID team members are required to complete

analysis on potential effects forest management projects may have to the existing environment. In this

project, the effect of forest management on six aspects of forested stands were completed using Python

scripting. To complete this analysis more efficiently, the Python scripts were implemented by custom

geoprocessing tools where current forest stand condition and proposed post-harvest condition were

summarized for forest habitat type groups, desired future conditions, current cover types, age class, old-

growth status, and age/cover type patch sizes. The Python script developed for this tool can be found in

Appendix D: Geoprocessing Tool Python Script 2: Habitat Type Group Analysis (Current Condition). The

resulting geoprocessing tools require user input feature classes from the vegetation analysis data prep

tool. The inputs are then processed, and summary tables exported as Microsoft Excel spreadsheets into

a designated folder. A supplemental support document was also created as shown in Appendix C. This

appendix describes how inputs were manipulated in the analysis, why the analysis was being completed,

and the functional product of each geoprocessing tool for the project. This workbook is crucial for ID

team members to understand how the scripting manipulates their input data and will aid in eventual

troubleshooting and adaptation of the scripts for future projects.

26

The first tool that was created was the forest habitat type group tool. Forest habitat type groups

can be described as the potential vegetation community, patterns of succession, and potential for

productivity at a given site (Pfister et al., 1977). The forest habitat types were split in the confines of the

cumulative effects area, and direct effects area into nine separate habitat type groups. In the context of

this project, management of forest stands would not change the habitat type group because the

measurement of this forest attribute only gives foresters an idea of what vegetation and productivity

might be. The created tool simply summarized the total acreage for each group type for the cumulative

and direct effects area. Basic workflow and process for the Python script is described by conceptual

model in figure 3.

Figure 3 workflow shows a basic outline for the scripting process. Blue circles represent key feature class inputs and green circles represent

outputs that will be used in the environmental impact statement. The individual workflows are one process that can take either input.

The forest habitat type group tool consists of four user input parameters including the direct

effects updated timber inventory, the cumulative effects updated timber inventory, and one output

excel file locations as described below9.

• Cumulative effects updated timber inventory: data type: feature layer.

(ResultsRun_UpdatedCETimberInventory_20230221).

• Direct effects updated timber inventory: data type: feature layer.

(ResultsRun_UpdatedDETimberinventory_20230221).

9 Descriptions of the input parameters are included in the metadata for the geoprocessing tools where users can
“hover” over the input information to see how to input appropriate data.

27

• Output location and file name: data type: file. This parameter allows the user to select a save

folder in their home directory and assign a unique name for the summary table. The parameter

also has a file filter on it to only allow the creation of Excel (.xlsx) file type. File set at a desired

location as an output dataset.

Once the datasets were defined, areas for both the direct effects updated timber inventory area,

and cumulative effects updated timber inventory area were updated utilizing the calculate geometry

attributes function from the arcpy site package. This process needs to be completed at the beginning of

each of the tools to ensure that the acreage being summarized is accurate and that inadvertent changes

to stand polygon boundaries are quickly identified. To determine the accuracy of the acres within the

updated timber inventory areas, control acreage from the original downloaded datasets can be

compared to the output summary tables from this tool. An example of this would be that total acres of

both project areas need to match that of the original acres.

After the acres are calculated, the updated direct effects and cumulative effects area were

passed to the statistics function from the arcpy site package. This function summed the acres based on

the habitat type group field (HAB_GRP) and the non-spatial tables were saved to the GIS’s default

geodatabase set in the environments tab. The non-spatial tables were then sent to an Excel file through

use of the arcpy conversion function, table to Excel, where the output location and file name

parameters set the location of where the newly created Excel files were written to the disk. To keep the

home environment geodatabase workspace clean, the non-spatial tables were passed to the delete

function from arcpy. Once all scripting was completed, the metadata for the habitat type group tool was

updated to include descriptions of the tool’s function, parameter definitions, and use limitations of the

tool. Results from running this tool are described in the discussion section of this report.

Desired future condition tool

The next step in the environmental impact statement vegetation analysis is to complete an

existing condition analysis for the desired future conditions of forested stands within the cumulative

effects, and direct effects analysis areas. The desired future condition of a forested stand represents the

historic dominant tree cover based on observations from the 1930’s (Losensky, 1997). The desired

future condition does not change based on silvicultural treatment selected by foresters and ID team

members, but some prescriptions will alter current stand cover which will move the stand towards its

desired future condition faster than others. Because the desired future condition will never change for

28

the stand, a Python script, like the habitat type group analysis was created. The change in the current

stand cover as it relates to desired future conditions is implemented in the following section.

To complete current desired future condition analysis, the same procedure was followed to

create summary Excel tables based on the acreage of the desired future condition forest types as shown

in figure 4. The script for this process is shown in Appendix D: Geoprocessing Tool Python Script 3. There

are eight different forest types that are classified across the forest that denote the desired predominant

forest cover in desired tree species. To begin, user input parameters were set to collect the following

features, as well as set the output file locations for the resulting Excel summary tables as described

below.

• Cumulative Effects Updated Timber Inventory: data type: feature layer.

(ResultsRun_UpdatedCETimberInventory_20230221).

• Direct Effects Updated Timber Inventory: data type: feature layer.

(ResultsRun_UpdatedDETimberinventory_20230221).

• Direct Effects Output Location and File Name: data type: file. This parameter allows the user to

select a save folder in their home directory and assign a unique name for the summary table.

The parameter also has a file filter on it to only allow the creation of Excel (.xlsx) file type. File

set at a desired location as an output dataset.

Figure 4 workflow shows a basic outline for the scripting process. Blue circles represent key feature class inputs and green circles represent

outputs that will be used in the environmental impact statement. The individual workflows are one process that can take either input.

After user inputs were designated, geometry was then calculated for the acres field of the input

datasets, ensuring that any intentional alterations to the source dataset are captured. Once the acreage

had been calculated, the resulting feature classes were passed to a non-spatial summary statistics table

where the acreage was summed based on the desired future condition (MAJPOTVEG) field. Those tables

29

are then passed to the table to Excel function from the arcpy site package, and the user input file path

locations were utilized to set where the final tables were written to the local computer’s disk. To keep

the working environment clean, the non-spatial summary tables were then deleted from the home

geodatabase, leaving only the desired Excel files on the computer.

Because multiple tools are being created at this point in the project, the metadata was not only

updated for the resulting feature classes but was also filled out for the scripting tools themselves.

Metadata was updated for each tool in this project, but an example from the desired future condition

analysis tool is shown in figure 5 below.

Figure 5 shows a sample metadata for custom geoprocessing tools. It details the intended usage, as well as documentation for user input

parameters. As geoprocessing tools are created, metadata must be edited to reflect the intended use of the tool, document the input datasets

and set limitations for the use of the tool.

30

Current cover type tool

Once the geoprocessing tool for identifying and exporting the desired future condition of

forested stands was complete, the current cover analysis was completed. The created script is shown in

Appendix D: Geoprocessing Tool Python Script 4. The current cover of forested stands is described as the

current stand condition in terms of species composition, and these cover types were broken up into 9

distinct classes that detail the predominant cover type in each of the forest stands. These classes consist

of Douglas-fir, hardwood, lodgepole pine, mixed conifer, non-stocked, ponderosa pine, subalpine fir,

western larch/Douglas-fir, and western white pine cover types. Current cover is expected to change

between current condition and post-harvest conditions in even aged management treatment because

these treatments remove most of the large standing trees and canopy cover.

To capture this change in stand condition this script added two new user inputs over the previous

geoprocessing tools. The overall workflow of this script is shown in figure 6.

31

Figure 6 workflow shows a basic outline for the scripting process. Blue circles represent key feature class inputs and green circles represent outputs that will be used in the environmental impact

statement. The individual workflows are one process that can take either input. Update fields for other vegetation analysis portions will differ based on the proposed harvest treatment. I.e., age

class will change based on less intense and more intense treatment.

32

These new parameters, alternative proposed forest management treatments, serve as contrasting

alternatives that ID team members will usually design during the project planning phase of the

environmental impact statement. These alternatives generally must be viable options for forest

management treatment, and foresters will use alternative development to home in on certain forest

issues that could have long term impacts on forest stand structure and forest health. Generally, the ID

team expects to see ample change between post treatment effects to forest stand condition. Because of

the nature of an EIS’s planning process, real world alternative treatment feature classes could not be

used so hypothetical units were created that mimic the attributes of the server hosted feature layer PTU

that is currently available to the foresters during the project implementation process. The user input

parameters consist of two feature layers called alternative Alpha treatment units (PTU_AltA_20230221),

and alternative Beta treatment units (PTU_AltB_20230221) that have key attributes of silvicultural

prescription (RX), area, and cutting unit number. In a real analysis setting, there are more attribute fields

available, but these attributes were unneeded for the scope of this project. The list of user inputs for

this geoprocessing tools were:

• Cumulative effects updated timber inventory: data type: feature layer.

(ResultsRun_UpdatedCETimberInventory_20230221).

• Direct effects updated timber inventory: data type: feature layer.

(ResultsRun_UpdatedDETimberinventory_20230221).

• Summary table output location and file name: data type: file. This parameter allows the user to

select a save folder in their home directory and assign a unique name for the summary table.

The parameter also has a file filter on it to only allow the creation of excel (.xlsx) file type. File

set at a desired location as an output dataset.

• Alternative alpha treatment units: data type: feature layer. This parameter is a user defined

feature layer detailing polygons showing intended areas of forest management. Key attribute

fields are silvicultural prescription (Rx) and cutting unit number (Cutting_Unit).

(PTU_AltA_20230221).

• Alternative beta treatment units: data type: feature layer. This parameter is a user defined

feature layer detailing polygons showing intended areas of forest management. Key attribute

fields are silvicultural prescription (Rx) and cutting unit number (Cutting_Unit).

(PTU_AltB_20230221).

33

A pivotal concept that needed to be coded into the Python scripts and output to the ID team/end

users is the description of change in acreage between the current forest stand condition, and the

intended post-harvest condition based on alternative selection. In short, the program needed to tell the

end user what acres of cover type they currently had in their respective project areas, and what those

acres would change to once the forest treatment was completed. To complete this task, the script first

uses the union function from the arcpy site package to incorporate the user input cumulative effects

updated timber inventory and direct effects updated timber inventory with both the Alpha and Beta

treatment units. The union function will take input polygons and “overlay” them onto one another and

all features and their attributes are written to a new feature class as shown in figure 7. This process gave

the input stand level inventory the attributes of the alternative’s silvicultural prescription with which the

tool makes field calculations to quantify the change in acreage for the desired forest attribute10.

Figure 7 shows how the union works within the script. Input proposed alternative units and the updated timber inventory layer are created and

all boundaries and edges are maintained. In addition to boundaries being maintained, the attributes from the attribute table are maintained.

This will allow further manipulation of attribute fields that are created later in the Python script. This image was produced by ESRI and accessed

by C. Stephenson on 3/26/2023. The illustration can be found on the ArcGIS Pro summary website found at (https://pro.arcgis.com/en/pro-

app/latest/tool-reference/analysis/union.htm)

 Once these union datasets were created, they were passed to arcpy’s calculate field function where

a post treatment cover field (CVR_CURR_POST) was created and populated with the same values that

10 This and all processes described in this report had to be completed twice, once for each alternative. This action is
reflected in the Python scripts shown in Appendix D

https://pro.arcgis.com/en/pro-app/latest/tool-reference/analysis/union.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/analysis/union.htm

34

the current cover field (CVR_CURR) holds. To ensure that acreages are correct after geometry was

changed due to the union process, area in acres was then calculated for the acres (ACRES) field. Once

acres were updated, union features were passed to the arcpy make feature layer function. This allowed

where clauses to be implemented so that even age management treatments could be selected. After the

desired Rx treatment was selected11 the post treatment cover field (CVR_CURR_POST) was updated to

match the preferred future vegetation field (MAJPOTVEG) if the Rx treatment fell into an even aged

management regime. This shows that the current forest stand cover will change to the preferred future

vegetation cover with an even aged management treatment.

Finally, summary tables were built and exported to the user defined file output for current cover

stand condition, and post treatment cover stand condition, as well as summarizing the change between

current and post treatment condition by incorporating the summary statistics for acres by both fields

and reporting them to the same Excel worksheet. All summary statistics tables were exported to the

same Excel file and the individual sheets were clearly labeled by the script and could clearly be accessed

within the Excel environment. To keep the GIS working environment clean, all intermediate and final

feature classes and non-spatial tables were deleted at the end of the script. Results from this

geoprocessing tool are displayed and presented in the discussion portion of this report.

Forest age class tool

Like forest current and post-harvest cover type, forest age class is another important metric that

foresters and ID team members pay attention to because forest age can imminently be affected by

common treatments used to achieve overall project objectives. The age class of forested stands is

described as the current average age of all trees within the stand, and these ages were broken up into 6

classes that represent the average age of the dominant vegetation cover across the stand. These classes

consist of 000-039, 040-099, 100-149, 150-199, 200+, and old growth age. Age class is expected to

change between current condition and post-harvest conditions in more intense management treatment

because these treatments remove most of the large standing trees/cover which significantly reduces the

average age of the stand.

11 The resulting feature layer from this process make a temporary feature layer that only contain attributes of the
Rx field designated by the script. Essentially further edits to this feature layer will only affect the desired polygons
that have that Rx treatment.

35

The geoprocessing tool and Python script that was created (Appendix D: Geoprocessing Tool Python

Script 5) for this part of the project followed the same basic principles as described above in the current

cover type workflow. A workflow for the script was developed before coding as shown in figure 8.

The user defined parameters for the script include the following:

• Cumulative Effects Updated Timber Inventory: data type: feature layer.

(ResultsRun_UpdatedCETimberInventory_20230221).

• Direct Effects Updated Timber Inventory: data type: feature layer.

(ResultsRun_UpdatedDETimberinventory_20230221).

• Summary Table Output Location and File Name: data type: file. This parameter allows the user

to select a save folder in their home directory and assign a unique name for the summary table.

The parameter also has a file filter on it to only allow the creation of Excel (.xlsx) file type. File

set at a desired location as an output dataset.

• Alternative Alpha Treatment Units: data type: feature layer. This parameter is a user defined

feature layer detailing polygons showing intended areas of forest management. Key attribute

fields are silvicultural prescription (Rx), and cutting unit number (Cutting_Unit).

(PTU_AltA_20230221).

• Alternative Beta Treatment Units: data type: feature layer. This parameter is a user defined

feature layer detailing polygons showing intended areas of forest management. Key attribute

fields are silvicultural prescription (Rx) and cutting unit number (Cutting_Unit).

(PTU_AltB_20230221).

36

Figure 8 workflow shows a basic outline for the scripting process. Blue circles represent key feature class inputs and green circles represent outputs that will be used in the environmental impact

statement. Update fields for other vegetation analysis portions will differ based on the proposed harvest treatment. I.e., age class will change based on less intense and more intense treatment.

37

The script took these variables and completed the union function between the updated timber

inventory feature classes to the alternative Alpha and Beta treatment units. Once the union function

was completed the features were passed to the calculate field function where a post treatment age class

(AGECLASS_POST) field was created and populated with the values from the current age class field

(AGECLASS). A series of feature layers were then created and where clauses implemented to show only

stands that had the silvicultural prescription consistent with even aged management. These temporary

feature layers’ post treatment age class fields were then updated to show 000-039 years of average age.

Because these changes are made to the selection only, but the process utilizes the original union feature

as an input, the changes made to the selected feature layer are incorporated into the original union

layer.

Once changes to the post treatment age class (AGECLASS_POST) field were made, these features

were passed to the summary statistics function where acres were calculated. The resulting non spatial

tables were then exported to Excel where the summary of acres based on current age class, post

treatment age class, and the change in age class types were sent to workbooks in the user defined Excel

location. Once the Excel tables were exported all temporary and final feature classes, layers, and non-

spatial summary statistic tables were deleted. Results and outputs from this geoprocessing tool are

discussed in the discussion section of this report.

Forest old growth tool

Like age class, old growth must be considered by ID team members and foresters. The amount

and distribution of old growth on the forested landscape is often one of the largest defining factors that

foresters use to distinguish between alternatives. The state of Montana utilizes the Green et al (1992)

definition of old growth where number of large diameter trees per acre, basal area, and average age of

the stand are the defining factors in determining old growth. These attributes are described in many

places in the state’s timber inventory (Timberinventory_20230103), but the age class (AGECLASS) field

combines field verified stands into the old growth designation and this process is completed just before

analysis begins for the project. For an environmental impact statement this represents the most concise

representation of old growth in the project area and is what has traditionally been utilized for

vegetation analysis. It should also be noted that further description of forest stands old growth

attributes and indexes are considered for environmental impact statements but are outside the scope of

the current geoprocessing tools intended for the vegetation analysis. The old growth analysis

geoprocessing tool follows a similar workflow as described in previous sections and only accounts for

38

acres of current old growth and potential acres that will not be old growth post-harvest. Future versions

of the vegetation analysis geoprocessing tool could utilize and describe the old growth forest attributes,

should ID team members need them.

To complete the old growth analysis, a Python script was written (Appendix D: Geoprocessing Tool

Python Script 6) and created the following user defined parameters12.

• Cumulative Effects Updated Timber Inventory: data type: feature layer.

(ResultsRun_UpdatedCETimberInventory_20230221).

• Direct Effects Updated Timber Inventory: data type: feature layer.

(ResultsRun_UpdatedDETimberinventory_20230221).

• Summary Table Output Location and File Name: data type: file. This parameter allows the user

to select a save folder in their home directory and assign a unique name for the summary table.

The parameter also has a file filter on it to only allow the creation of Excel (.xlsx) file type. File

set at a desired location as an output dataset.

• Alternative Alpha Treatment Units: data type: feature layer. This parameter is a user defined

feature layer detailing polygons showing intended areas of forest management. Key attribute

fields are silvicultural prescription (Rx) and cutting unit number (Cutting_Unit).

(PTU_AltA_20230221).

• Alternative Beta Treatment Units: data type: feature layer. This parameter is a user defined

feature layer detailing polygons showing intended areas of forest management. Key attribute

fields are silvicultural prescription (Rx), and cutting unit number (Cutting_Unit).

(PTU_AltB_20230221).

The script follows the workflow described in figure 9.

12 User defined parameters for all geoprocessing tools after data prep are the same. This portion of the report is
intended to thoroughly detail the inputs and describe the process of the scripts. Results will be covered in the
discussion section.

39

Figure 9 workflow shows a basic outline for the scripting process. Blue circles represent key feature class inputs and green circles represent outputs that will be used in the environmental impact

statement. The orange star figure represents output feature classes that will be added to the home geodatabase. Process is the result of not deleting the features in the script. Update fields for other

vegetation analysis portions will differ based on the proposed harvest treatment. I.e., age class will change based on less intense and more intense treatment.

40

These parameters were then utilized by the script to union the updated timber inventory

feature classes and union them to the alternative Alpha and Beta treatments. A post treatment old

growth field (OLDGROWTH_POST) was then created in the union dataset and calculated to contain the

same values as the current age class field (AGECLASS). The make feature layer function from the arcpy

site package was then utilized to select areas that were old growth only. This allows the rest of the script

to make changes to only the affected old growth acres and disregards all other age classes. The old

growth only feature layer was then passed to another make feature layer function where silvicultural

prescriptions for even aged management were selected and the old growth post treatment field

updated to show the corresponding age class. This process follows the same logic as the age class

geoprocessing tool where even aged management changes to the 000-039 age class.

In addition to removal of old growth into the lowest age class this also takes into consideration

how uneven aged management, and low impact treatments could affect the age class of a current old

growth stand. To do this, a feature layer was created by inputting the old growth only feature layer into

the make feature layer function. A where clause only identified treatments in old growth recruitment

(OGR), group select (GS), and individual tree select (ITS) and changed the post treatment old growth

(OLDGROWTH_POST) to be in the 200+ year age class. This portion of the script says that the treatment

in these old growth stands was not enough to change the overarching age of the stand, but that

generally, the stand would no longer meet the rest of the requirements described in the Green et al

(1992) definition. Summary tables were then created and exported to Excel showing the current

amount of acreage for each age class13 and alternative Alpha and alternative Beta post treatment old

growth amounts were exported. Like before, all temporary and final feature layers and non-spatial

summary statistics tables were deleted from the workspace environment.

A key concept that is discussed at the project implementation and planning level is the level of

insect and disease pressure within old growth stands. ID team members will often report the number of

high-risk, medium-risk, and low-risk old growth stands that are being treated and these numbers often

will inform the selection of a preferred alternative. For example, an alternative treating more acres of

high-risk old growth than an old growth maintenance treatment might be selected over one that does

not treat the high-risk acres. For this project, a hypothetical insect and disease risk rating field

13 The first summary table would be identical to the first table from the age class analysis but was exported for
ease of interpretation for ID team members when taking the tables from Excel into a final environmental
document. This also provides an opportunity to quality control numbers across non-spatial tables.

41

(Defect_Risk) was applied to both the alternative Alpha and alternative Beta proposed treatment units.

This field mimics the insect and disease risk rating that is generally collected in the field during the

reconnaissance phase of project development and is expected to vary within the project area from

forested stand to forested stand. To quantify the number and current risk of acres of old growth that

will potentially be treated, the old growth only feature layer was passed to the summary statistics

function and the acres were summed and output to an Excel table.

 Because foresters often include maps of old growth in the vegetation analysis section of

environmental impact statements, the copy features function from arcpy was used at the end of this

script to save the following temporary feature layers to the disk/the home geodatabase that the current

ArcGIS Pro project file is using14. The following temporary feature layers were saved to home

geodatabase. They are intended to serve as a visual representation of where old growth exists and is

being removed within the cumulative effects and direct effects project area.

• Current_OG_SRSF: data type: feature class. This feature class shows the user all current old

growth stands within the cumulative effects project area. *End users might alter this output to

fit the thematic needs of the maps they are creating.

• Removed_OG_AltA: data type: feature class. This feature class shows all areas of old growth

that will be removed with alternative Alpha treatments.

• Removed_OG_AltB: data type: feature class. This feature class shows all areas of old growth

that will be removed with alternative Beta treatments.

• Remaining_OG_AltA: data type: feature class. This feature class shows all areas of old growth

remaining after implementing alternative Alpha treatments.

• Remaining_OG_AltB: data type: feature class. This feature class shows all areas of old growth

remaining after implementation of alternative Beta treatments.

Age and cover type patch size tool

The final tool created to support and streamline vegetation analysis for foresters and ID team

members was the age and cover type patch size tool. The Python script for this tool is shown in

Appendix D: Geoprocessing Tool Python Script 8. Age class distribution and cover type distribution across

the landscape informs ID team members of where the acreage occurs. Larger patches of contiguous

older forest age classes and areas that meet the desired future and historical conditions of the forest are

14 The home environment is set outside of the geoprocessing tools. This process is described in Appendix C.

42

more desirable. These forest attributes are taken into consideration during the planning phase of the

environmental impact statement process. The script developed for this project follows the outline

described in the conceptual model in figure 10. Though there is only one model shown for the process,

two distinct geoprocessing tools were created to give flexibility to ID team members as they run the

analysis. This was also completed to make coding easier where each individual script completes a

singular analysis process.

43

Figure 10 workflow shows a basic outline for the scripting process. Blue circles represent key feature class inputs and green circles represent outputs that will be used in the environmental impact

statement. The orange star figure represents output feature classes that will be added to the home geodatabase. Process is the result of not deleting the features in the script. Update fields for other

vegetation analysis portions will differ based on the proposed harvest treatment. I.e., age class will change based on less intense and more intense treatment.

44

Once again, user defined parameters were first created in the script. These parameters are the

same as the geoprocessing tools created before. To find the current patch size however, a new process

was completed at the beginning of this script. To begin, a new feature class was created that showed

where the current adjacent age class boundaries were dissolved. The dissolve functions process is

illustrated below in figure 11. After the dissolve function was completed for the age class field, the

resulting features were multiple multi-part polygons based on the age class. This would be inadequate

to calculate the mean acres for these polygons, so the features were passed to the multipart to single

part function from the arcpy site package. This tool “explodes” the features so that unconnected islands

of individual age classes would be represented as their own, single part polygon. The multipart to single

part function’s process is described in figure 12.

Figure 11 shows the basic use of the dissolve tool from the arcpy site package. Like attributes from a designated field are dissolved to show

total acreage of the desired class. This image was produced by ESRI and accessed by C. Stephenson on 3/26/2023. The illustration can be found

on the ArcGIS Pro summary website found at (https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/dissolve.htm)

Figure 12 shows the basic use of the multipart to single part tool from the arcpy site package. Like attributed polygons that are not c onnected

or are “ Islands” will be separated. This allows a true mean patch size to be calculated later in the script. This image was produced by ESRI and

https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/dissolve.htm

45

accessed by C. Stephenson on 3/26/2023. The illustration can be found on the ArcGIS Pro summary website found at

(https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/multipart-to-singlepart.htm)

Once the current age classes were dissolved and “exploded”, a summary table was created that

summarized using the ‘mean’ parameter on the acres (ACRES) field based on the current age class

(AGECLASS) field. The resulting non spatial table was then passed to the table to Excel function used at

the end of the script.

After the first summary table was created, a similar process to the previous geoprocessing

scripts was implemented to change the current age class conditions to the intended post treatment age

class conditions. This was done by creating a new post age class field (AGECLASS_POST) and updating

the field by selecting the desired silvicultural prescriptions using the make feature layer function. This

process resulted in identical results to the age class analysis script, but further manipulation of the

features was required to result in the correct patch size analysis. To do this, the age class post

(AGECLASS_POST) field was dissolved and exploded using the dissolve function and the multipart to

single part function from the arcpy site package. To ensure that the acres were accurate for the final

summary statistics table, the exploded feature class was then passed to the calculate geometry attribute

function. This calculated the geometry for the newly minted age class patch size polygons. Finally, the

post treatment age class (AGECLASS_POST) field from the post age exploded patch feature class was

summarized using the ‘mean’ parameter and the resulting non spatial summary table was passed to the

table to Excel function. All temporary and final feature classes and non-spatial tables were then deleted

at the end of the script to ensure that the home workspace environment remained uncluttered.

Because foresters generally will need to visually represent the current and updated patch sizes

for the environmental impact statement, a few key resulting patch size feature classes were omitted

from the delete function. These feature classes can be incorporated into maps for the environmental

impact statement and are as follows:

• Current_Ageclass_Patchsize_CE: datatype: feature class. This feature class shows the average

patch size of all age classes across the cumulative effects project area. * End users might alter

this output to fit the thematic needs of the maps they are creating.

• AltA_Post_age_Patchsize: datatype: feature class. This feature class shows the average patch

size of all age classes after harvest for alternative A.

• AltB_Post_age_Patchsize: datatype: feature class. This feature class shows the average patch

size of all age classes after harvest for alternative B.

https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/multipart-to-singlepart.htm

46

• Current_Cover_Patchsize_CE: datatype: feature class. This feature class shows the average

patch size of all cover types across the cumulative effects project area. * End users might alter

this output to fit the thematic needs of the maps they are creating.

• AltA_Post_Cover_Patchsize: datatype: feature class. This feature class shows the average patch

size of all cover types after harvest for alternative A.

• AltB_Post_Cover_Patchsize: datatype: feature class. This feature class shows the average patch

size of all cover types after harvest for alternative B.

After the age class patch size was completed, the same process was carried out for forest cover

types. The Python scripting looks exactly the same as the age class but the variables and field names

were changed from the current and post age class fields (AGECLASS, AGELCASS_POST) to the current

and post cover type fields (CVR_CURR, CVR_CURR_POST). The resulting tables and feature classes are

labeled accordingly. Details on the resulting feature classes described above can be found in Appendix A.

Methods summary

Two project areas were defined called the cumulative effects and direct effects project areas.

Once that was completed hypothetical incomplete harvest units, alternative Alpha units, alternative

Beta units, were then created to serve as inputs for the streamlining vegetation analysis geoprocessing

tools. A data preparation tool was then developed to take the state’s timber inventory layer, the project

area boundaries, and the incomplete harvest units to incorporate potential harvest effects to the

current timber inventory using union, make feature layer, calculate field, and summarize arcpy

functions. Forest habitat type and desired future condition summary table tools were created by

calculating total acreage for the desired forest attributes and exporting them to Excel using the table to

Excel functions from the arcpy site package.

To quantify post-harvest treatments, a current and post treatment cover type, forest age class,

old growth, and age and cover patch size tools were created. These tools followed similar processes to

the data preparation tool where the union, make feature layer, calculate field, and summarize functions

were used. Outputs for these tools include table to Excel generated Excel summary tables, in addition to

select feature classes that were output to the workspace environment. This end use of these outputs is

intended to both describe the changes on the landscape as well as show the changes to old growth

spatially via the resulting feature classes.

47

To finish up the project, a final two geoprocessing tools were scripted to show the effects of

alternative forest management on the patch size for age classes and cover types across the cumulative

effects and direct effects project areas. This was completed by inputting the updated timber inventory

layers from the data prep method and the alternative treatment units. These features were then

manipulated using the union, make feature layer, calculate field, dissolve, multipart to single part, and

summarize functions. These tools produced a series of non-spatial summary tables describing changes in

the forest age class and cover across the project areas, as well as a visual representation of those

changes in the form of updated feature classes.

The methods for this project are intended to be dynamic and should be manipulated and

changed as projects and state processes change. Though the processes for how the scripting works for

streamlining vegetation analysis, the results of the geoprocessing tools will be described and discussed

in the following section.

48

Tool outputs and discussion

Upon completion of the methods section of the project, a complete “run” of the geoprocessing

tools was completed to ensure proper function. This process also served to investigate how the end user

would experience the vegetation analysis toolbox and further tweaks and alterations were made to the

Python scripts and functionality to improve the user experience. The following discussion presents the

findings and outputs of the specific geoprocessing tools that were created and describes the use of the

tools as it relates to an environmental impact statement. The analysis that was completed by running

through the same process an ID team member might complete during vegetation analysis and findings

are presented. Because state environmental analysis processes are completed over long time scales and

must go through extensive internal review before release for public review, live data was not utilized in

the geoprocessing tools. This suite of tools may be utilized to complete vegetation analysis at any area in

the state, once it is vetted through an internal review process at the Forest Management Bureau within

the Department of Natural Resources and Conservation. This portion of the project also discusses how

the outputs for this tool can be utilized for further spatial analysis that can be completed utilizing other

Python scripting site packages and libraries.

Data preparation results

The first step in completing the streamlined version of the vegetation analysis, using the

geoprocessing tools created in the methods section was to run the vegetation analysis data prep tool.

The inputs and starting environment in the ArcGIS Pro GIS are shown in figure 13.

49

Figure 13 shows the GIS environment before implementing the data prep tool. Datasets are detailed in the contents pane and inputs are s hown

in the geoprocessing tool in the middle right of the window. Green circles in this map represent incomplete timber sales, blue and red circles

represent alternative Alpha and Alternative Beta proposed treatment units.

The expected result of this tool was to output three distinct feature classes within the

Streamline_Veg_INPUTS geodatabase that follow the naming convention described at the beginning of

Appendix A. Visually the expected result was to show a feature layer of the Stand Level Inventory (SLI) in

which you could symbolize the layer by cutting unit. This would show the 10 theoretical inputs as cutting

units that maintain the timber inventory boundaries, cutting unit boundaries, while maintaining all

attributes of both features as shown in figure 14.

Figure 14 shows the updated timber inventory layer for use in later geoprocessing tools and the outputs of the feature class. The

Streamline_Veg_INPUTS.gdb was designated as the output geodatabase location in the user parameters of the data prep tool. Individual cutting

units are highlighted in pastel colors (U1-U10)

50

To further investigate the effectiveness of this tool, one of the 16 attribute fields that have been

altered was selected to investigate the expected change based on Rx from the incomplete timber sale

units. For ease of symbolizing and clarity of the breaks, the age class (AGECLASS) field was chosen. Based

on the methodology described in the methods section, the tool itself, and Appendix C; areas that were

treated with seed tree, clear cut, or overstory removal (OSR) treatments would be represented in the 0

to 39 years at model run age class. When symbolized on the age class field and units with this Rx

designation show that they have been updated to reflect their potential post-harvest conditions (figure

15). There were 5 units treated with adequate silvicultural Rx that would cause change in age class. It

was possible to investigate the rest of the incomplete harvest units where age class remained

unaffected by running the tool as these areas would show up falling under a treatment area, but current

age class would not change.

Figure 15 shows updated cumulative effects timber inventory dataset symbolized based on the age class field. The red circles represent

incomplete units that are being treated with clear cut, seed tree, or overstory removal (OSR) treatments. The blue circles represent incomplete

units that are being treated with all other “uneven aged management” treatments.

51

The data prep tool has shown to significantly reduce the time required to implement a data

freeze on the local datasets in the initial stages of planning for the vegetation analysis. By reducing the

amount of individual geoprocessing tools that need to be ran, and coding the post-harvest change

criteria into the Python script that is manipulating the timber inventory layer, the potential for

inconsistencies in how data is prepared for the analysis is minimized. By using this geoprocessing tool for

data prep, it is easier to have a reproducible result between members of an ID team. In later iterations

of testing, replicability can be examined by looking at the trend of acres across varying cumulative

effects project areas at the state. Overall, the tool behaves as expected and the outputs of this tool,

ResultsRun_UpdatedCETimberInventory_20230221 and

ResultsRun_UpdatedDETimberInventory_20230221 can be used in the following vegetation analysis

processes.

Forest habitat group results

After completing the baseline data prep tool, the updated cumulative effects, and direct effects

timber inventory layers can be input into the forest habitat group geoprocessing tool. To check the

expected result of this tool, the original timber inventory dataset was clipped to both the cumulative

effects and direct effects project area. This process allowed the calculation of total forested acres within

those areas. The cumulative effects area calculated out to ~54,260 acres and the direct effects area

calculated out to ~13,021 acres15. These numbers will serve as a baseline for which summary tables will

be compared for the rest of the project. The expectation is that the total number of acres will not

change regardless of the forest attribute that is being summarized. The key input parameters for this run

were the updated timber inventories for the cumulative effects and direct effects areas, detailed in

figure 16. Upon running the tool an output Excel table was created in a folder on the disk that was

designated in the tool parameters. The resulting Excel table found that the acreage does match up with

the expected result for both the cumulative effects and direct effects project areas (table 1), and the

habitat type parameters return all westside codes. This is a telltale sign in the dataset that is expected

due to the geographic location of the project areas that shows no incorrect areas were included in the

geoprocessing tool.

15 Acres for the cumulative effects and direct effects project areas are rounded to the nearest acre for ease of
understanding. Actual acres may minutely change based on presence of sliver acres and geoprocessing tool
execution.

52

Figure 16 shows the inputs and file path for the output Excel that the summary table will be sent to upon completion.

Table 1: Habitat Type group summary table

Table 1 shows the results of running the geoprocessing tool. Acreages were rounded to the nearest whole acre to produce even results. *Some

discrepancy in acres is expected due to processing of the base dataset.

Of all the analysis processes that were completed during the vegetation analysis, the current

condition summary tables are the least intensive and require the least amount of time to complete but

the tool does reduce the number of steps to produce both tables as well as serving as a baseline for the

rest of the analysis moving forward, and the output Excel file path parameter allows end users to quickly

designate an area in their home file directory. This will allow for greater organization while allowing the

end user to develop a final naming convention that will keep the project file uncluttered. This is because

mistakes in creating the summary tables by hand can be minimized and intermediate and draft summary

tables will not need to be created. The tool behaves as expected and the summary acres created by the

tool match those created by hand.

53

Desired future condition results

Continuing, the desired future condition, current condition tool was ran by inputting the same feature

classes as the habitat group analysis tool (figure 17). The expected results of this tool are largely the

same as the previous run in that there should be ~13,021 and ~54,260 acres within the cumulative

effects and direct effects project areas respectively. The run completed without issue and output the

Excel files into the designated folder. The output Excels tables showed that the totals did match the

expected result as shown in table 2.

Figure 17 shows the inputs and file path for the output Excel that the summary table will be sent to upon completion.

Table 2: desired future conditions summary table

Table 2 shows the results of running the geoprocessing tool. Acreages were rounded to the nearest whole acre to produce even results. *Some

discrepancy in acres is expected due to processing of the base dataset.

The resulting table shows the total acres expected as well as some differences in the preferred

future vegetation type between the cumulative effects and direct effects project areas. This change is

also expected with the addition of the subalpine fir cover type because the direct effects area covers

most of the low-lying acres across the Swan River State Forest and this cover type usually occurs at

54

higher and cooler elevations. The “correct” answers to each step are easily described and can be verified

by adding the total acres of the preferred vegetation types to equal the total forested acreage in the

cumulative effects and direct effects project area. Like the previous tool, this process would give an ID

team member the ability to quickly run the summary tool and both summary tables will be output,

leading to a more efficient and streamlined analysis.

Current cover type results

The next geoprocessing tool had some different requirements in that this is the first forest

attribute that could be affected by prescribed silvicultural treatment. The overall process for

determining the initial current condition was like the first two workflows, but an additional two

parameters were included in the results run as shown in figure 18. These parameters give the script the

key attributes to make changes to newly created fields that will quantify the post-harvest treatment

conditions of the affected forested stands. The resulting output summary tables showed the expected

results but were a bit harder to understand because of the complexity of how the acres changed from

current conditions to post harvest treatment. This is shown in tables 3 through 7.

Figure 18 shows the inputs and file path for the output Excel that the summary table will be sent to upon completion.

Table 3: Current cover summary table

55

Table 4: Post treatment cover type summary table alternative Alpha

Table 5: Post treatment cover type summary table alternative Beta

Table 6: Current and post treatment change summary table alternative Alpha

56

Table 7: Current and post treatment change summary table alternative Beta

Table 5-7 shows the results of running the geoprocessing tool. Acreages were rounded to the nearest whole acre to produce even results.

*Some discrepancy in acres is expected due to processing of the base dataset.

The resulting tables all represent the correct acreage for the cumulative effects and direct

effects areas as shown by the total fields above. The difficulty in interpretation lies in looking at the last

4 tables in the series where the sum_acres column shows the total acres and the Losensky type (current

cover type). The cover type post treatment columns show the first column is the current condition and

the second column is the condition the treatment will cause. This means that a record with the first

column showing Douglas-fir and the second column showing mixed conifer, the acres in the sum acres

field are the number of acres of Douglas-fir being changed to mixed conifer. The results of this shown

above show that total acreage change is zero and the acres of cover type are merely moved around

depending on the treatments implemented with each alternative.

For an environmental impact statement, these cover type changes are important because of

rules and regulations set by the State Forest Land Management Plan (SFLMP) and Administrative Rules

that require sustainable treatment of biodiverse forests while actively moving stands towards their

desired future conditions. This tool drastically reduces the amount of trial and error that was historically

used to complete this same analysis by hand by automatically placing the summary tables into the

output Excel. Traditionally acreages were summarized within the Excel environment using pivot tables

after exporting the raw data. When analysis was completed before, the summary of acres and the

change in those acres might be off by several acres depending on how the data was selected before

exporting. Though the resulting tables are difficult to understand without explanation, foresters and ID

57

team members will be able to interpret the results and present the information in the final

environmental impact statement once the tool is run. Overall, the tool behaves as expected and future

tweaks to the code could allow for a more instantly understood summary table.

Forest age class results

After current cover type analysis was completed the cumulative effects and direct effects

updated timber inventory feature classes were passed to the forest age class analysis tool as input

parameters. The starting environment before running the tool is shown in figure 19. Like the cover type

tool, the input parameters are the same except for the final summary table output file name. To keep

the final summary tables organized, the results run name was used to lead the file name and

Age_Class_Analysis was added afterwards. All output Excels followed this same naming convention. The

program run completed without issue and summary tables were output into the designated file

directory. Upon initial inspection, the results from the table were as expected, with the cumulative

effects area showing ~54,260 acres and ~13,021 acres respectively as shown in tables 8 through 12.

Figure 19 shows the inputs and file path for the output Excel that the summary table will be sent to upon completion.

Table 8: Current age class summary table

58

Table 9: Post treatment age class summary table alternative Alpha

Table 10: Post treatment age class summary table alternative Beta

Table 11: Current and post treatment age class change summary table alternative Alpha

Table 12: Current and post treatment age class change summary table alternative Beta

Tables 8-12: shows the results of running the geoprocessing tool. Acreages were rounded to the nearest whole acre to produce even results.

*Some discrepancy in acres is expected due to processing of the base dataset.

59

Like the cover type analysis tables, the resulting 10 tables from the age class analysis show the

current stand conditions, and the post-treatment conditions for the cumulative effects area and direct

effects area based on the alternative Alpha and alternative Beta treatments. The last 4 tables follow the

same logic described in the cover type analysis section. An example of this from one age class to another

would be that the Sum_Acres column for an age class of 40 to 99 years in the age class column and 0 to

39 years in the age class post treatment column would represent the number of acres changing from the

40-year class to the 0-year class. This type of analysis was often difficult to complete with little training,

and inconsistencies in acres would come up when completing the process by hand. These

inconsistencies were often due to individual team members not following a consistent approach to

selecting acres. Age class units, and slivers might have been missed due to misunderstanding of

members on how to utilize the definition query tools. This geoprocessing tool seems to minimize the

chance of inconsistencies and reduces the time spent on completing the analysis. The results from

running the tool were as expected.

Forest old growth results

Another important part of the environmental impact statement vegetation analysis process is to

review and describe how old growth might be affected by alternatives within the project. The expected

output for this tool is slightly altered from previous runs, in that the tool does not look at all the acres

across the cumulative effects and direct effects project areas, but only those that are currently old

growth. To test the expected result a definition query had to be placed on the original cumulative

effects area updated timber inventory layer as well as the direct effects area updated timber inventory

layer. The acres were then summarized. The direct effects area currently has ~2,231 acres of old growth

and the cumulative effects area currently has ~7,383 acres of old growth. Upon completion of the

geoprocessing tools run, the expected result for all treated and altered acres would be these two values

described above.

The inputs for the old growth analysis tool are the same as the previous tools as shown in figure

20. The expected outputs for the tool are a series of tables showing the current condition of old growth

within the cumulative effects and direct effects project area and post treatment condition of old growth

within those same areas. The tables are summarized based on the age class and old growth post

treatment fields as shown in tables 13-17. The summary tables also consider the current cover type of

60

the old growth stands in question. The age class and post age class field were added and summarized to

make the resulting tables easier to understand.16

Figure 20 shows the inputs and file path for the output Excel that the summary table will be sent to upon completion.

Table 13: Current old growth summary table

Table 14: Post treatment old growth by current cover type summary alternative Alpha

16 All tables 13-17 are considered old growth prior to treatment.

61

Table 15: Post treatment old growth by current cover type summary alternative Beta

Table 16: Post treatment old growth by defect risk summary alternative Alpha

Table 17: Post treatment old growth by defect risk summary alternative Beta

Tables 13-17 shows the results of running the geoprocessing tool. Acreages were rounded to the nearest whole acre to produce even results.

*Some discrepancy in acres is expected due to processing of the base dataset.

The geoprocessing tool created 10 non-spatial tables from the old growth analysis that show the

current stand conditions, and the post-treatment conditions for the cumulative effects area and direct

effects area based on the alternative Alpha and alternative Beta treatments. All the acres in the

summary tables are considered old growth currently and those acres that are labeled with a different

age class (other than old growth) in the old growth post treatment field are considered not old growth

62

post treatment. The Losensky type field shows the current cover type of that acreage of old growth.

There is still room for improvement on this process as the tool does not describe the change of Losensky

old growth acres to the desired future condition based on the proposed silvicultural treatment type.

Moving forward, this script will need to be updated and to include all expected changes. Though it does

include these modifications in its current state, the results from the tool can be incorporated into the

basic summary tables for old growth. This type of analysis was the most difficult to accomplish while

completing the vegetation analysis by hand. There are numerous variables to keep track of during the

analysis and it is extremely easy to get “lost” in the process and inconsistent numbers to be produced

for the environmental impact statement. This tool does a good job at the first steps for old growth

analysis, but there is much improvement that could be made to further increase the utility of the tool.

This geoprocessing tool seems to minimize the chance of inconsistencies and reduces the time spent on

completing the analysis. The results from running the tool were as expected.

An added benefit of the old growth analysis geoprocessing tool is that several output feature

classes are added to the home environment in the GIS. Current old growth in the Swan River State

Forest, remaining old growth post treatment for alternatives Alpha and Beta, as well as remove old

growth post treatment for alternatives Alpha and Beta are produced. These feature layers combined can

show areas of high, medium, and low risk old growth, and whether these areas will be removed from

the timber inventory post-harvest (figure 21 A & B). This added functionality will also allow foresters and

ID team members to run this tool several times during the planning process of the environmental impact

statement and physically see how the landscape might change under a preferred alternative. This will

potentially lead to more informed decisions on the ground as silvicultural prescriptions are designated

for the project.

63

Figure 21A shows current old growth (dark green areas) on the SRSF feature layer that was output from the streamlining vegetation analysis old

growth analysis tool. Bule and red circles represent incomplete and alternative Alpha treatment units that would either remove old growth (red

circles) or maintain old growth (blue circles). High and medium risk old growth stands that have been removed are highlighted in the direct

effects project area by bright red and yellow symbology. *A remaining old growth feature class is also produced but not symbolized in this

figure.

64

Figure 21B shows current old growth (dark green areas) on the SRSF feature layer that was output from the streamlining vegetation analysis old

growth analysis tool. Bule and red circles represent incomplete and alternative Beta treatment units that would either remove old growth (red

circles) or maintain old growth (blue circles). High and medium risk old growth stands that have been removed are highlighted in the direct

effects project area by bright green and yellow symbology. *A remaining old growth feature class is also produced but not symbolized in this

figure.

 Age and cover type patch size results

The final geoprocessing tool that was created takes the cumulative effects area and direct

effects area updated timber inventory layers as input parameters (figure 22) to determine the current

and post-harvest effects to the average patch size for both the age class (AGECLASS) and current cover

type (CVR_CURR) fields. The expected results of this tool were several output Excel tables and three

distinct feature layers that show the current average patch size across age classes. Most treatments that

alter age class and cover types within the cumulative effects and direct effects project area overall

reduce the mean patch size for older age classes and will slightly increase patch size for younger age

groups. This is because stands are more actively moved towards younger age groups with treatments,

breaking up the landscape and potentially adding acres to adjacent stands with a younger age class that

65

were previously treated. This trend is shown in tables 18 through 20, where younger age class mean

patch size slightly increases across both alternative treatments and the older age classes slightly

decrease. Though this rule does not happen every time, the trend in how patch size changes show how

the forest cover moves as treatment is carried out.

Figure 22 shows the inputs and file path for the output Excel that the summary table will be sent to upon completion. *Inputs for the age class

patch analysis are exactly the same with the exception of the title of the tool and the output file name.

Table 18: Current age class patch size

Table 19: Post treatment age class patch size alternative Alpha

66

Table 20: Post treatment age class patch size alternative Beta

Tables 18-20 show the results of running the geoprocessing tool. Acreages were rounded to the nearest whole acre to produce even results.

*Some discrepancy in acres is expected due to processing of the base dataset.

In contrast to the age class patch size analysis, the cover type fields will not follow the same

logic of moving acres from one cover type to another. Because cover type is varied across both the

cumulative effects and direct effects areas, it is hard to determine which cover types are going to be

more represented post-harvest than others. This is largely due to the use of the major potential

vegetation field to calculate the post-harvest effects in the current cover post-harvest field. Overall, the

expected result would be a slight increase in more commonly desired future cover types. In the Swan

River State Forest, this is generally the western larch/Douglas-fir and western white pine cover types.

This trend is shown in the alternative B treatments in tables 21-23, where there is a slight increase in

patch size for the described cover types above. For alternative A, it is also expected that the mean patch

size will be larger at the cumulative effects level than at the direct effects level as shown in table 22.

Table 21: Current cover mean patch size

67

Table 22: Post treatment cover mean patch size alternative Alpha

Table 23: Post treatment cover mean patch size alternative Beta

Tables 21-23 show the results of running the geoprocessing tool. Acreages were rounded to the nearest whole acre to produce even results.

*Some discrepancy in acres is expected due to processing of the base dataset.

Foresters and ID team members often include visual representation of the summary tables

above. The geoprocessing tool can output three different age class patch size feature classes;

ltA_Post_Age_PatchSize, AltB_Post_Age_PatchSize, and Current_Ageclass_PatchSize_CE into the home

workspace geodatabase. The tool also outputs three different cover type patch size feature classes;

ltA_Post_Cover_PatchSize, AltB_Post_Cover_PatchSize, and Current_Cover_PatchSize_CE. These feature

classes can be placed in the mapping window of the GIS environment as shown in figure 23 and figure

24. Maps shown in this report are in the ArcGIS Pro GIS environment and do not reflect final maps that

would be placed in a final environmental impact statement. Not only does the analysis process of

dissolving and exploding the features become easier and less time consuming, foresters and ID team

members can be sure that the analysis is completed the same way each time they decide to run a

hypothetical alternative or add/remove potential harvest units in their project development process.

68

Of all the geoprocessing tools developed to streamline the vegetation analysis for

environmental impact statements, the age class and cover type patch size seems to achieve the

objectives of reducing time spent completing analysis, and reducing inconsistencies between different

runs the most consistently. The tool behaves as expected and utilizing the tool reduces the amount of

time and effort to complete good data management.

Figure 23 A shows the current age class patch size that was output from running the age class and cover type patch size analysis geoprocessing

tool. Both alternative Alpha, alternative Beta, and incomplete timber sale units symbolized to show uneven aged and even aged treatments.

Current conditions will take into consideration age class patch size outside of the direct effects project area.

69

Figure 23 B shows the post alternative Alpha age class patch size that was output from running the age class and cover type patch size analysis

geoprocessing tool. Alternative Alpha treatment units are symbolized to show more and less intense treatments that would alter the age class

patch size post-harvest. Current conditions will take into consideration incomplete treatment effects on age class patch size outside of the

direct effects project area.

70

Figure 23 C shows the post alternative Beta age class patch size that was output from running the age class and cover type patch size analysis

geoprocessing tool. Alternative Beta treatment units are symbolized to show more and less intense treatments that would alter the age class

patch size post-harvest. Current conditions will take into consideration incomplete treatment effects on age class patch size outside of the

direct effects project area.

71

Figure 24 A shows the current cover class patch size that was output from running the age class and cover type patch size analysis

geoprocessing tool. Both alternative Alpha, and alternative Beta treatment units are symbolized to more Intense and less intense treatments.

72

Figure 24 B shows the post-treatment alternative Alpha cover class patch size that was output from running the age class and cover type patch

size analysis geoprocessing tool. alternative Alpha units highlighted with more intense treatment expect to see cover class change to move

towards a desired future condition detailed in the MAJPOTVEG attribute field. *Some change might not be readily noticeable if current cover

already meets desired future condition before treatment.

73

Figure 24 C shows the post-treatment alternative Beta cover class patch size that was output from running the age class and cover type patch

size analysis geoprocessing tool. Alternative Beta Units highlighted with more intense treatment expect to see cover class change to move

towards a desired future condition detailed in the MAJPOTVEG attribute field. *Some change might not be readily noticeable if current cover

already meets desired future condition before treatment.

At the end of running each of the tools a few key takeaways could be reported. Because the

tools required the same inputs, it was simple to run multiple tools back-to-back with no inconsistencies

in the output tables. There is also a significant ability to utilize the program to provide a decision maker

with many more alternatives. For example, the inputs for alternative Alpha and Beta are not “set” and

as long as the ID team members are consistent with their naming practices and data management,

multiple different scenarios and treatment units can be passed to the tool allowing users to try new

ideas that they otherwise might not have tried due to time constraints. This means that foresters could

design multiple different alternatives more quickly, and the potential effects of these will be more

readily apparent when the ID team enters the alternative development phase of the project.

74

Spatial analysis issues and opportunities

During this phase of project completion, a few issues with the code were identified and the

robustness of the tool could be improved in future iterations of the Python script. For starters, if

incomplete harvest units do not fall completely within the cumulative effects analysis area, and

completely outside the direct effects project area, there is potential for inconsistencies in actual acres

being treated vs. acres that are being reported in the environmental impact statement. For example, if

10 acres of a 100-acre unit falls outside of the cumulative area, foresters would be apt to report that 100

acres are being treated, when only 90 acres would be accounted for in the analysis and the output

summary tables from the geoprocessing tools. This can be mitigated by ensuring good data

management practices when creating harvest units by ensuring that the units fall directly within the

boundaries of the cumulative area. Moving forward, a topology tool script could be set for the map in

the project that could validate the spatial relationship of the incomplete units leading to further warn

the user when treatment areas are not within the correct project area. This issue is consistent across all

the tools and care must be taken to ensure that forest management area inputs follow the methodology

described in this report.

Furthermore, this project served as a good first step in spatial analysis, in that it easily quantifies

the projected post-harvest impacts to forested stands on state trust lands. It does this by reclassifying

key forest attributes based on expected results of forest management treatment. Because the tools

themselves serve the purpose of making this analysis more efficient by creating simple to understand

summary tables for use in environmental impact statements, more robust spatial analysis is not

completed with this project. However, the outputs from the geoprocessing tools could be utilized to

determine spatial relationships between attributes within the timber inventory, and further augment

the decision-making process of future ID teams.

To do this, the categorical data of the updated alternative Alpha and Beta, or the data prep

timber inventories could be exported into a csv file and read directly into a Jupyter notebook using the

Pandas Python library and other libraries to identify areas of interest through means like hierarchical

clustering. In this process, the summary table with attached polygon geometry could be exported using

the current newly created geoprocessing tools. This file could then be read into a GeoPandas data

frame, and the spatial relationship of the categorical data could be explored and conclusions drawn

about where specific attributes exist on the landscape. This level of robustness in the analysis could lead

75

to further analysis where forested attributes can be clustered and the correlation between varying

forest attributes can be discovered. This would lead to a better understanding of how forest

management affects the landscape and lead to more informed decisions on the ground. Conceptually a

question an ID team might want to understand is the location of adjacent age classes in relation to

forest type, or old growth occurrence. By clustering these areas together and looking at where each of

these attributes exist, and ID team might be able to predict where deficiencies exist in a certain age class

or forest type and predict where they can be most successful at designing alternative treatments that

maintain desirable attributes.

Finally, in order to make this project even more useful to ID team members, the following list

are recommended improvements to the script and project that would increase the FAIR treatment of

the data and make the vegetation analysis tool more useful in forest management project development.

• Create a “complete run” version of the tool: This tool would run every aspect of the

vegetation analysis and allow the user to complete all steps with one button push

leading to increased efficiency when completing the environmental analysis.

• Add raw data output to each summary table: This portion of the script would output

the raw data from the manipulated timber inventory datasets into a final work sheet in

the output Excel summary table. This would give the user the opportunity to run

additional analysis to check summary statistics and develop new ways to investigate

spatial relationships outside of the GIS environment.

• Include automatic metadata for newly created feature classes: This portion of the

script would append metadata that would describe the analysis process on newly

created feature classes. This would ensure that users would not need to remember to

add in metadata at the end.

• Include a topology check for newly created alternative units: This portion would check

for extreme examples where proposed treatment unit locations might lead to incorrect

summary acres in the final environmental Impact statement report.

• Design further ways to test results in a more controlled environment: Units could be

placed directly on the edges of a smaller hypothetical dataset that utilizes the same

attributes and domains as state datasets. The acreages could then be calculated within

the existing geoprocessing tools and results compared to a control dataset.

76

Conclusion

Environmental analysis for complex forest management projects takes time, and for a state

agency like the Montana Department of Natural Resources and Conservation (DNRC), thorough and

consistent completion of this analysis is key. This process is completed through the development of an

interdisciplinary team (ID team), where foresters are usually tasked with completing the vegetation

analysis for the project. In the past, analysis has been carried out over extended periods of time and

personnel completing the analysis will sometimes change from the beginning of the project to the end.

This can lead to inconsistencies within the analysis that requires increased review and quality control

before environmental documents are released for public review purposes. This increased review can

significantly increase the time spent completing analysis and the potential for inaccurate information to

be produced is present. To comply with the analysis that is required by MEPA, this project attempted to

streamline the vegetation analysis process by utilizing the ArcGIS Pro scripting tool and Python scripting

to automatically complete a set of vegetation analysis. These scripts took user defined parameters such

as a timber inventory layer, and proposed harvest units and combining them while changing key forest

attribute fields to reflect potential post-harvest conditions.

The overall analysis required for completing this project was not overly complex, but time and

consideration needed to be paid to each process and geoprocessing tool that was created. Some of the

key concepts that ended up guiding this project were good project management, concise workflow

development, and adequate documentation of resulting data tables and feature classes. By

implementing these concepts, a quick and consistent way to complete vegetation analysis was

developed. Each of the resulting geoprocessing tools behaved as expected and minimal input was

required to complete adequate vegetation analysis. On average, it took roughly between 2 and 3 hours

to complete the whole suite of vegetation analysis tools in one sitting. This timing was established when

completing multiple testing runs during the results/discussion section of the project. This time to

complete the analysis is far less than completing it by hand which was often completed over several

days, and most of the time, in lengthy work sessions that spanned over multiple sittings. This project not

only standardizes the analysis being completed by producing workflow (Appendix C) but allows foresters

to complete multiple runs of analysis utilizing the geoprocessing tools. By quickly outputting the post-

harvest effects of a treatment foresters can compare what the landscape might look like after a

particular forest management project is completed. These hypothetical runs can be incorporated into an

alternative development process at the ID team level which could lead to more informed decision

77

making on the ground as well as an increased realization of project objectives. In addition to making the

vegetation analysis easier, the documentation of the vegetation analysis process and the resulting tables

provided in this report leave an important and defensible line of reasoning as to how the analysis was

completed and what the intended use of the products were for.

Though a good portion of the project did go according to plan, a few lessons were learned along

the way that might make a project like this in the future better. Early in the planning process, it was

identified that not every aspect of vegetation analysis that is sometimes utilized in an environmental

impact statement could be covered by the newly created geoprocessing tools due to time constraints

and the interaction of how silvicultural prescriptions might affect forest stand attributes. To mitigate

these constraints, the most important forest attributes were chosen that had clear connections to pre

and post treatment conditions. Difficulty also arose around producing summary tables that could easily

be understood, and interpreting expected results from the geoprocessing tools was not always evident

when first running the tools. Though a forester would be able to interpret the results with the produced

workbook, there is room for improvement by incorporating table formatting into the code that could

make it easier for non-forest professionals to instantly understand the outputs without formatting the

output tables by hand. Though there is room for improvement, the intended audience of this report

should be able to understand the results and future versions of the toolbox can address these issues.

In conclusion, this project’s goal was to streamline the vegetation analysis for environmental

impact statements that are completed for forest management projects on state trust lands. The project

largely completed this task by developing a methodology for completing the analysis and implementing

that methodology using geoprocessing tools and Python scripting. The expected results were achieved

as described in the discussion section and though there is improvement to be made, this vegetation

analysis toolbox can be recommended to an ID team to serve as a project development tool, data

analysis tool, and quality control tool when compared to analysis completed by hand. Moving forward,

the projects vegetation analysis geoprocessing toolbox needs to be vetted through the Montana DNRC’s

Forest Management Bureau to ensure that live data can be fed to through the tools and that the

resulting summary tables match those of the expected results of analysis from current projects.

Additionally, these scripts can be altered and modified to include specific analysis not covered in this

report. These updates are expected and necessary to ensure that the scope of issues developed within

EIS project planning are included in the analysis. There is still much room for improvement within the

78

current scope and scale of work when streamlining vegetation analysis, but this project has made

headway on reducing time spent by foresters and ID team members to complete vegetation analysis.

References

Causton, D. R. (1988). An introduction to vegetation analysis : principles, practice, and interpretation

[Book]. Allen & Unwin.

Esri. (2023a, February 20). What is GIS? Esri GIS Overview Website. https://www.esri.com/en-us/what-

is-gis/overview

Esri. (2023b, April 30). Python migration from 10.x to ArcGIS Pro. Esri Python Migration Website.

https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/Python-migration-for-arcgis-pro.htm

Green, P., Joy, J., Sirucek, D., Hann, W., Zack, A., & Naumann, B. (1992). Old-Growth Forest Types of the

Northern Region. In R-1 SES 4/92; USDA Forest Service, Northern Region, Missoula, MT. (pp. 23–

26). USDA Forest Service, Northern Region.

Kim, T. J. (1999). Metadata for geo-spatial data sharing: A comparative analysis. In Ann Reg Sci (Vol. 33).

Losensky, J. (1997). Historical Vegetation of Montana. In Contract 970900, DNRC Technical Report (pp.

1–3). Montana DNRC.

National Academy of Sciences. (2019). Reproducibility and Replicability in Science.

https://doi.org/10.17226/25303

Pfister, R., Kovalchik, B., Arno, S., & Presby, R. (1977). Forest Habitat Types of Montana. In USDA For.

Serv. Gen. Tech. Rep. INT-34. Intermountain Forest & Range Experiment Station, Ogden, Utah

84401 (p. 139). USDA Forest Service.

Pimpler, E. (2015). Programming ArcGIS with Python cookbook : over 85 hands-on recipes to teach you

how to automate your ArcGIS for desktop geoprocessing tasks using Python (2nd ed.) [Book]. Packt

Publishing.

Rees, B. E. Van. (2014). Python Scripting and GIS Increasing Efficiency. Geoinformatics, 17(7), 46–48.

Ricker, B. A., Rickles, P. R., Fagg, G. A., & Haklay, M. E. (2020). Tool, toolmaker, and scientist: case study

experiences using GIS in interdisciplinary research. Cartography and Geographic Information

Science, 47(4), 350–366. https://doi.org/10.1080/15230406.2020.1748113

Saabith, A. L. S., Fareez, MMM., & Vinothraj, T. (2019). Python Current Trend Applications- An Overview.

Scientific Journal of Impact Factor, 6(10), 6–6.

Sonti, SH. (2015). Application of Geographic Information System (GIS) in Forest Management. Journal of

Geography and Natural Disasters, 5(3), 2–5. doi:10.4172/2167- 0587.1000145

Standovár, T., Szmorad, F., Kovács, B., Kelemen, K., Plattner, M., Roth, T., & Pataki, Z. (2016). A novel

forest state assessment methodology to support conservation and forest management planning.

Community Ecology, 17(2), 167–177. https://doi.org/10.1556/168.2016.17.2.5

https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/python-migration-for-arcgis-pro.htm

79

Stockwell, H. (2013). A Guide to the MONTANA ENVIRONMENTAL POLICY ACT. http://leg.mt.gov/eqc

Understanding Trust Lands. (2023, February 20). State of Montana Public Information Website.

https://dnrc.mt.gov/TrustLand/about/understanding-trust-land

Wiles, J. (2017). Montana’s State School Trust Lands. In Public Land and Resources Law Review (Vol. 38).

Wilkinson, M. D. (2016). The FAIR Guiding Principles for scientific data management and stewardship.

Scientific Data, 3(160018). doi: 10.1038/sdata.2016.18

80

Data citations

Timber Inventory

FMB_DNRC_TimberSLI_20201029 (2023) [Download]. Montana Department of Natural Resources and

Conservation, 2705 Spurgin Rd, Missoula MT. 59804 [October 29, 2020]

SRSF Boundary

CumulativeEffects_Boundary_20230221 (2023) [User Generated]. User generated feature class to be

utilized as the cumulative effects boundary area. [February 21, 2023]

SRSF Boundary

Direct_Effects_Boundary_20230221 (2023) [User Generated]. User generated feature class to be utilized

as the direct effects boundary area. [February 21, 2023]

Alternative Alpha Forest Management Treatments

PTU_AltA_20230221 (2023) [User Generated]. User generated feature class to be utilized as the

theoretical management unit alternative. [February 21, 2023]

Alternative Beta Forest Management Treatments

PTU_AltB_20230221 (2023) [User Generated]. User generated feature class to be utilized as the

theoretical management unit alternative. [February 21, 2023]

State of Montana

States (2020) [downloaded file]. Price, Maribeth. Mastering ArcGIS Pro, McGraw Hill Education, New

York, NY [November 21, 2020].

State of Montana Ownership

States (2023) [downloaded file]. Obtained from the State KDE internal drives.

81

Appendix A: Data dictionary reference

Appendix A serves as a repository of data that will be included as an input or is expected as an output

from geoprocessing tools in this report. Sources of the data can be found in the data citation section of

the report. Field alias/common name, field name, and attribute field descriptions are included in the

table. In order to keep dataset names consistent in the beginning stages of the project, the following

naming convention was utilized when running the data prep geoprocessing tool and when downloading

datasets from their source.

Figure 25: Shows the naming convention for input and output datasets used as parameters for vegetation analysis geoprocessing tools. Naming

convetion is not mandatory for further analysis after this project.

Reference table 1: Data dictionary table17
Dataset Alias/

Common
Name

Dataset Name Input/Output Notes/Attributes

Timber
Inventory

Timberinventory_20230103 Input Timber inventory consists of roughly
170 fields of forest attribute data
that describes the current condition
of individual polygons or stands.

This project utilizes the following
attribute fields:

1. FOGI CLASS
2. VIGORINDEX
3. STRUCINDEX
4. SNAGSINDEX
5. CWDINDEX
6. STKINDEX

17 Reference table 1 is limited to datasets relevant to Python scripting only. Visual background layers like earth
imagery and ownership used in maps within the document are not included.

Geodatabase Naming Convention

Level 1: Initials of User: This Can be absent from

dataset name for inputs. *Users should also

include pertinent information like number of

runs to keep track of scenarios built through the

geoprocessing tools.

Level 2: Feature Class name
*Reflects downloaded

dataset.

Level 3: Date (YYYYDDMM)

*date structure orders

features in the

geodatabase based on day

run

ResultsRun_CEtimberinventory_20220301

82

Dataset Alias/
Common

Name
Dataset Name Input/Output Notes/Attributes

7. CROWNINDEX
8. TOTSTK
9. SAWSTK
10. SSC
11. TPA
12. AGECLASS
13. HAB_GRP
14. MAJPOTVEG
15. CVR_CURR
16. GIS_Acres

SRSF
Boundary

CumulativeEffects_Boundary_2
0230221

Input SRSF boundary consists of 1 polygon
with two key attribute fields. Lands
within the polygon boundaries
include State owned lands and
adjacent, non-state ownership.

This project utilizes the following
attribute fields:

1. Acres
2. Unit

Project Area DirectEffects_Boundary_20230
221

Input Project area consists of 1 polygon
with two key attribute fields. Lands
within the polygon boundaries
include land that covers haul routes
and direct effects areas for forest
management.

This project utilizes the following
attribute fields:

1. Acres
2. Project_Area_Name

Alternative
Alpha Forest
Management
Treatments

PTU_AltA_20230221 Input Alternative Alpha consists of 10
unique polygons within the project
area detailing theoretical forest
management units. The feature class
contains 3 attribute fields that
indicate stand location, proposed
silvicultural treatment and other
pertinent aspects of forest
management activities.

83

Dataset Alias/
Common

Name
Dataset Name Input/Output Notes/Attributes

The project utilizes the following
attribute fields:

1. Rx
2. Cutting_Unit
3. Defect_Risk

Alternative
Beta Forest
Management
Treatments

PTU_AltB_20230221 Input Alternative Beta consists of 10
unique polygons within the project
area detailing theoretical forest
management units. These units
represent forest management units
that might be recommended by
foresters on the ID team. Their
potential effects on the ground will
alter forest attributes. The feature
class contains 3 attribute fields that
indicate stand location, proposed
silvicultural treatment and other
pertinent aspects of forest
management activities.

The project utilizes the following
attribute fields:

1. Rx
2. Cutting_Unit
3. Defect_Risk

Incomplete
Management
Units

Incomplete_Units_20230221 Input Incomplete Management Units
consists of 5 unique polygons within
the project area, detailing
theoretical forest management
units. These units represent forest
management projects that would be
“under” contract, but are currently
not finished. Effects of these types of
units must be considered as “Current
Condition” before vegetation
analysis can be completed.

The feature class contains 2 attribute
fields that indicate stand location,
silvicultural treatment and other
pertinent aspects of forest
management activities.

84

Dataset Alias/
Common

Name
Dataset Name Input/Output Notes/Attributes

Cumulative
effects Timber
Inventory

ResultsRun_CEtimberinventory
_20230221

Output Feature class output from the
vegetation analysis data prep tool.

The feature class contains the same
attribute fields as the timber
inventory dataset and is clipped to
the cumulative effects project area.
This can be utilized as an input for
current stand condition summary
table tools.

Updated
Cumulative
Effects Timber
Inventory

ResultsRun_UpdatedCETimberI
nventory_20230221

Output Feature class output from the
vegetation analysis data prep tool.

The feature class contains the same
attributes fields as the timber
inventory dataset and the
incomplete management unit’s data
set. This can be utilized as an input
for current stand conditions
summary table tools.

Updated
Direct Effects
Timber
Inventory

ResultsRun_UpdatedDETimberi
nventory_20230221

Output Feature class output from the
vegetation analysis data prep tool.

The feature class contains the same
attributes fields as the timber
inventory dataset and the
incomplete management unit’s
dataset. This can be utilized as an
input for current stand conditions
summary table tools.

 Current_OG_SRSF Output This feature class shows the user all
current old growth stands within the
cumulative effects project area. *End
users might alter this output to fit
the thematic needs of the maps they
are creating.

 Removed_OG_AltA Output This feature class shows all areas of
old growth that will be removed with
alternative Alpha treatments.

 Removed_OG_AltB Output This feature class shows all areas of
old growth that will be removed with
alternative Beta treatments.

85

Dataset Alias/
Common

Name
Dataset Name Input/Output Notes/Attributes

 Remaining_OG_AltA Output This feature class shows all areas of
old growth remaining after
implementing alternative Alpha
treatments.

 Remaining_OG_AltB Output This feature class shows all areas of
old growth remaining after
implementation of Alternative Beta
treatments.

86

Appendix B: Timber inventory attribute fields dictionary

Appendix A serves as a more detailed look into the attributes of the input datasets described in

Appendix A. Timber inventory attributes were pulled from the Montana DNRC’s SLI_Datadictionary

accessed on 12/20/2022. Other attributes are either calculated in the ArcGIS Pro environment or

created by foresters in the field reconnaissance portion of project planning.

Reference table 2: Attribute dictionary table
Dataset Alias/

Common
Name and

Source

Notes/Attributes

Timber
Inventory

DNRC Data
Dictionary

FOGI CLASS – Full Old Growth Index
 * Calculated by adding VIGORINDEX + STRUCINDEX + SNAGSINDEX +
 CWDINDEX + LLTR_INDEX + STK_INDEX + CROWNINDEX

VIGORINDEX – Record of vigor in the stand:
 0 = Full vigor; open grown trees,
 1 = Good to average vigor; clumpy grown trees
 2 = Just below average to poor vigor; poor crown ratios
 3 = Very poor vigor; stand is in decadent condition

STRUCINDEX – Record of structure in the stand:
 0 = single storied
 1 = two-storied
 2 = multi-storied

SNAGSINDEX – Measure of amounts of snags in the stand
 0 = No Snags
 1 = Few snags (1-2 snags /acre)
 2 = Some snags (3-10 snags/acre)
 3 = Lots of snags (>= 11 snags/acre)

CWDINDEX – Measure of amounts of Coarse Woody Debris in the stand.
Calculated by number of pieces counted.
 0 = No CWD (<1 ton/acre)
 1 = Few CWD (1-9 tons/acre)
 2 = Some CWD (10-20 tons/acre)
 3 = Lots of CWD (>= 21 tons/acre)

87

Dataset Alias/
Common

Name and
Source

Notes/Attributes

STKINDEX – Measure of gross stocking in thousand board feet in the stand.
 0 = GMBFS < 4
 1 = GMBFS >= 4 and GMBFS < 7
 2 = GMBFS >= 7 and GMBFS < 10
 3 = GMBFS >= 10 and GMBFS < 13
 4 = GMBFS >= 13 and GMBFS < 16
 5 = GMBFS >= 16 and GMBFS < 21
 6 = GMBFS >= 21 and GMBFS < 26
 7 = GMBFS >= 26

CROWNINDEX – Measure of crown density based on overall stocking of the stand
 0 = Poorly stocked 10-39% of area
 2 = Medium stocked 40-69 % of area
 4 = Well stocked greater than 70% of area

TOTSTK – Measure of total stocking in the stand of all size trees
 N = Non-stocked 0% of area
 S = Scattered stocking 0-9% of area
 P = Poorly stocked 10-39% of area
 M = Medium stocked 40-69% of area
 W = Well stocked greater than 70% of area

SAWSTK – Measure of sawtimber total stocking in the stand
 N = Non-stocked 0% of area
 S = Scattered stocking 0-9% of area
 P = Poorly stocked 10-39% of area
 M = Medium stocked 40-69% of area
 W = Well stocked greater than 70% of area

SSC – Forested Stand Size Class
 6 = Non-stocked or deforested
 7 = Seedling/sapling (> 50% of trees are less than 5” DBH)
 8 = Pole timber (> 50% of trees are between 5” and 8.9” DBH)
 9 = Saw timber (>10% crown density in trees ≥9”DBH or 11”DBH for
 hardwood, 40” max)

TPA – Average number of trees per acre recorded to the nearest 50 TPA

88

Dataset Alias/
Common

Name and
Source

Notes/Attributes

AGECLASS – Average age of the stand
 NONFOREST = Non-forest, road or water
 000-039 = 0 to 39 years at model run
 040-099 = 40 to 99 years at model run
 100-149 = 100 to 149 years at model run
 150-199 = 150 to 199 years at model run
 200+ = 200+ years
 No Age Data= Those stands with INVSAM=12 and no age data
 OLDGROWTH = Those stands designated as old growth

HAB_GRP – Habitat Type Group of the stand
 2 = Warm and dry
 3 = Cold
 4 = Moderately warm and dry
 5 = Moderately cool and dry
 6 = Warm and moist
 7 = Cool and moist
 8 = Wet
 9 = Moderately cool and moist
 10 = Cool and moderately dry
 11 = Cold and moderately dry

MAJPOTVEG – Majority desired future condition cover within the stand. Based
on Montana Administrative rules and the Losensky coding system.
 DF = Douglas-fir
 HW = Hardwood
 LP = Lodgepole pine
 MC = Mixed conifer
 NONCOMM = Noncommercial
 NONSTKD = Non-stocked
 PF-NC = Noncommercial Limber pine
 PP = Ponderosa pine
 SUBALP = Subalpine fir
 WL/DF = Western larch / Douglas-fir
 WWP = Western white pine

CVR_CURR – Current cover within the stand. Based on Lozensky coding system.
 DF = Douglas-fir
 HW = Hardwood
 LP = Lodgepole pine
 MC = Mixed conifer
 NONCOMM = Noncommercial
 NONSTKD = Non-stocked

89

Dataset Alias/
Common

Name and
Source

Notes/Attributes

 PF-NC = Noncommercial limber pine
 PP = Ponderosa pine
 SUBALP = Subalpine fir
 WL/DF = Western larch / Douglas-fir
 WWP = Western white pine

GIS_Acres – Acres calculated using ArcGIS Pro. Represents gross acres.

SRSF
Boundary

This project utilizes the following attribute fields:

Acres – Acres calculated using ArcGIS Pro.

Unit – User defined text field: This project utilizes “Swan River State Forest”.

Project Area This project utilizes the following attribute fields:

Acres – Acres calculated using ArcGIS Pro

Project_Area_Name – User defined text field: This project utilizes
“StreamlineVeg”

Alternative
Alpha Forest
Management
Treatments

The project utilizes the following attribute fields:

Defect Risk – Measure of overall insect pressure in stand. Measured in the field
using SRSF insect and disease risk rating system.
 High = Risk rating above 13
 Medium = Risk rating 8-12
 Low = Risk rating 4-7

Rx – Designated Silvicultural Prescription for the stand
 ST = Seed tree
 OSR = Overstory removal
 CC = Clearcut
 CT = Commercial thin
 GS = Group select
 ITS = Individual tree select
 OGM = Old growth maintenance
 OGR = Old growth recruitment
 SW = Shelterwood

Cutting_Unit – User designated unit identifier: This project utilizes A1-A10

90

Dataset Alias/
Common

Name and
Source

Notes/Attributes

Alternative
Beta Forest
Management
Treatments

The project utilizes the following attribute fields:

Defect Risk – Measure of overall insect pressure in stand. Measured in the field
using SRSF insect and disease risk rating system.
 High = Risk rating above 13
 Medium = Risk rating 8-12
 Low = Risk rating 4-7

Rx – Designated Silvicultural Prescription for the stand
 ST = Seed tree
 OSR = Overstory removal
 CC = Clearcut
 CT = Commercial thin
 GS = Group select
 ITS = Individual tree select
 OGM = Old growth maintenance
 OGR = Old growth recruitment
 SW = Shelterwood

Cutting_Unit – User designated unit identifier: This project utilizes B1-B10

Incomplete
Management
Units

The project utilizes the following attribute fields:

Rx – Designated silvicultural prescription for the stand
 ST = Seed tree
 OSR = Overstory removal
 CC = Clearcut
 CT = Commercial thin
 GS = Group select
 ITS = Individual tree select
 OGM = Old growth maintenance
 OGR = Old growth recruitment
 SW = Shelterwood

Cutting_Unit – User designated unit identifier: This project utilizes A1-A10

Cumulative
effects Timber
Inventory

The feature class contains the same attribute fields as the timber inventory.

Updated
Cumulative
Effects Timber
Inventory

The feature class contains the same attributes fields as the timber inventory dataset and
the Incomplete management units dataset.

91

Dataset Alias/
Common

Name and
Source

Notes/Attributes

Updated
Direct Effects
Timber
Inventory

The feature class contains the same attributes fields as the timber inventory dataset and
the incomplete management unit’s data set.

92

Appendix C: Vegetation analysis workbook reference

This appendix document is intended to be a record of updates that need to be made to state

timber inventory data prior to use for analysis in an environmental impact statement as well as a basic

workflow that can produce the required summary tables for post-harvest effects for alternative Alpha

and Beta treatments. The following is a list of steps that an ID team member completing the data freeze

portion of the vegetation analysis must follow to reflect potential changes to forest attributes based on

intended effects of the previous multiple timber sale projects. The workflow is intended to show how

analysists will complete the analysis process “by hand” and it is assumed that individuals utilizing this

workbook reference have a working knowledge of the State’s timber inventory layer, current file

structure, and have read previous environmental impact statements to understand the summary tables

needed for analysis. The above custom geoprocessing tools follow the same basic methods to complete

the same processes more efficiently. Changes and processes completed in this workbook should be

carried out on the best available data at the time and could change once these projects are completed.

Each vegetation analysis process and summary table should be verified, and quality controlled with the

state silviculturist to ensure that overall summary tables make sense. This serves as a baseline for

analysis, and further analysis might be required based on comments and issues from the ID team or

from the public.

Changing fields like age class and some of the index fields are not to be carried forward into

future timber inventory releases because they are modeled fields. This data is intended to be used

locally for analysis at the Swan Unit for the EIS.

Steps for Data Prep before Vegetation Analysis:

1. Pull the most up to date timber inventory layer for the whole state from the TLMD_Data folder

on the K: drive.

a. Ensure that this is the most up-to-date version of the SLI with Andy Moffett/Gina Mazza

b. Save the FMB_Timberinventory layer to a local .gdb to be shared with ID team once

updates are made. *This is intended to be a local copy and will be used for the rest of

the project.

93

c. Clip the timber inventory layer to the cumulative effects project area. In the Swan this

will be the SRSF boundary that includes internal adjacent landowners.

2. Organize previous EIS timber sales and determine which ones have been “closed out” and which

ones are still “proposed”.

a. “Closed out sales”- Ensure that those updates are in the current version of the SLI that

was pulled for this exercise.

b. “Proposed” – Ensure that proposed units are in the ddit proposed harvest units’ layer on

the sale prep road log group.

i. Check if layout has been completed and update sale boundary areas to reflect

the most up-to-date shape and area, even if it has not sold! *This will generally

be only for the previous EIS but if there is still projects lingering from two EIS’s

ago, make sure these potential changes are captured.

c. “Open” – Ensure that open units are in the harvest history boundary areas to reflect the

most up-to-date shape and area. *This will include any sales currently under contract.

94

3. Union the “Proposed” and “open” units from Edit proposed harvest units and harvest history

from the previous projects to the clipped timber inventory layer from step 1. This file shows all

of the unit polygons mixed with the Stand Level Inventory (SLI) with all attributes intact.

4. In order to only update the fields that will be affected by proposed timber sale harvest, apply a

definition query to the union feature layer that shows only the SLI units from “proposed” and

“open” timber sales. This will look like timber sale boundaries with SLI polygons splitting them in

various arrangements.

5. Edit the following attribute fields based on the methods below. Ensure that you are editing the

“union” Stand Level Inventory (SLI)

6. FOGI indexes: Change the indexes that influence the FOGI score for all potentially treated OG

in the Union layer.

a. Query out the units that were age class old growth (These should be units that are only

from the “proposed” and “Open” timber sales *These are stands that have been field

verified).

b. VIGORINDEX- Vigor will not change post-harvest. Do not change.

c. STRUCINDEX- Change the structure index field to single story if the silviculture RX is

Seed Tree or Overstory Removal. Change the index to more than two stories if Old

Growth Maintenance is the silviculture prescription. OGM changed to greater than two

stories.

i. Change Condition: RX = ST or OSR, Change STRUCINDEX to “0”

ii. Change Condition: RX = OGM, Change STRUCINDEX to “2”

iii. *changing pre harvest index value from one to another needs to be a

concerted effort. *Check Silv Form.

d. SNAGSINDEX - Change snags index class to few for any treatment stands. Check OG

handbook. Why: This will reflect our 4 trees per acre of snags and snag recruits we

require for all our sales. Sale units generally do not have issues maintaining adequate

snags unless noted in Recon or if they weren’t there to begin with.

i. Change Condition: RX = ALL, Change SNAGSINDEX to “2”

95

e. CWDINDEX– Change the coarse woody debris (CWD) index class to few for any treated

stands. Why: this includes OGM and should reflect our post-harvest condition that is

required by our contract.

i. Change condition: RX = ALL Rx, Change CWDINDEX to “2”

f. STKINDEX – Change the stocking index class to a 3 (Around 2 loads/acre TOTAL) for

OGM treatments and 1 (around a load / acre TOTAL) for even aged management

treatments.) Other treatments fall in the 4-5 range for commercial thins etc. See OG

maintenance handbook.

i. Change condition: RX = ST or OSR, change STKINDEX to “0”

ii. Change condition: RX= SW or ITS, change STKINDEX to “1”

iii. Change condition: RX = OGM or GS, change STKINDEX to “3”

iv. Change condition: RX = all other treatments, change STKINDEX to “3-5” based

on Silviculture form or recon sheet. *check Silviculture Form.

g. CROWNINDEX – Change the crown index class to Medium for OGM, CT, and GS; and

OSR and Seed tree to poor.

i. Change condition: RX = OGM or CT or GS, Change CRWNINDEX to “2”

ii. Change condition: RX = ST or SW or OSR, Change CRWNINDEX to “0”

*It would be neat to do some ground truthing for some of these stands to see if these changes

hold up.

7. FOGI CLASS- Recalculate the Full Old Growth Index field for treated OG stands to be the sum of

the FOGI indexes. Classifications for the FOGI are as follows.

i. Change Condition: FOGI = 'VIGORINDEX', 'STRUCINDEX', 'SNAGSINDEX',

'CWDINDEX', 'LLTRINDEX', 'STKINDEX', 'CROWNINDEX'

1. Low < 13

2. Med 13-20

3. High 21+

96

8. TOTSTK: Change the TOTSTK fields for ST, OSR, and CC to a poor stocking and everything else to

medium stocked. Why: This should reflect the at least 40% canopy cover in stands that are

treated with commercial thin, OGM, group select, and other units.

a. Change condition: RX = ST, OSR or CC, Change TOTSTK to “P”

b. Change Condition: RX = All else, Change TOTSTK to “M”

9. SAWSTK: Change the SAWSTK fields for ST, OSR, and CC to a poor stocking and everything else

to medium stocked. Why: This should reflect the at least 40% canopy cover in stands that are

treated with commercial thin, OGM, group select, and other units.

a. Change condition: RX = ST or OSR or CC, change SAWSTK to “P”

b. Change condition: RX = All else, change SAWSTK to “M”

10. SSC: Change the SSC for OSR treatments to be 7. Why: What will actually be out there will be at

least 4 trees per acre (TPA) of leave trees and the snags and snag recruits. Some areas will look

like seed trees, but some areas will be more open than that. The understory will always be

regenerated but to varying degrees.

a. Change condition: RX = OSR, change SSC to “7”

11. TPA: change the TPA for OSR treatments to reflect what will be left on the ground. This is an

estimate from the silviculture form/recon sheet in the stand.

a. Change condition: RX = OSR, change TPA to current estimate from the recon sheet.

12. AGECLASS: Change the age class field if the silviculture RX is either ST or OSR. Age class should

be changed to 000-039. All other treatments will remain at their current Age Class.

a. Change condition: RX = ST or OSR or CC, change AGECLASS to 000-039

97

Vegetation Analysis Process

1. Organize current EIS timber sales into alternative Alpha and Beta units. (The easiest workflow

would be to utilize the PTU server hosted feature layer from the Forest Management Bureau to

build potential units.)

a. “Alternative Alpha” – Ensure that proposed units are in the PTU units’ layer on the sale

prep road log group.

i. Check if layout has been completed and update sale boundary areas to reflect

the most up-to-date shape and area. This should come from the data freeze

step in the planning process.

b. “Alternative Beta” – Ensure that proposed units are in the PTU units’ layer on the sale

prep road log group.

i. Check if layout has been completed and update sale boundary areas to reflect

the most up-to-date shape and area. This should come from the data freeze

step in the planning process.

2. Union the “alternative Alpha” and “alternative Beta” units from PTU to the updated and clipped

timber inventory layer from the data freeze process. This file shows all the proposed alternative

A and B unit polygons mixed with the SLI with all attributes intact. (You should have 4 distinct

feature layers you are going to use as inputs to the following processes, A cumulative and direct

effects updated SLI. Both show alternative A and alternative B treatments.)

3. To only update the fields that will be affected by proposed timber sale harvest, apply a

definition query to the union feature layer that shows only the desired alternative units from

“proposed” timber sales. This will look like timber sale boundaries with SLI polygons splitting

them in various arrangements.

4. Edit the following attribute fields based on the methods below. Ensure that you are editing the

appropriate alternatives “union”.

5. Habitat group analysis – No change or definition query required on the current clipped and

union SLI necessary.

98

a. Create a summary table using the summary statistics tool. Input table will be the desired

alternatives union and clipped SLI feature layer. The output table will be designated in

the file directory of your choice. Statistics field = ACRES, Statistic Type = SUM, Case

Field = CVR_CURR. The output table should add up to your respective cumulative effects

or direct effects area.

6. Desired future condition analysis – No change or definition query required on the current

clipped and union SLI necessary.

a. Create a summary table using the summary statistics tool. Input table will be the desired

alternatives union and clipped SLI feature layer. The output table will be designated in

file directory of your choice. Statistics field = ACRES, Statistic Type = SUM, Case Field =

MAJPOTVEG. The output table should add up to your respective cumulative effects or

direct effects area.

7. Current cover analysis – Add definition query to input clipped datasets from data prep step that

only show either alternative A, AB, or B depending on the summary table you are building.

a. Create a summary table using the summary statistics tool. Input table will be the desired

alternatives union and clipped SLI feature layer. The output table will be designated in

the file directory of your choice. Statistics field = ACRES, Statistic Type = SUM, Case

Field = CVR_CURR. The output table should add up to your respective cumulative effects

or direct effects area. This table is your current condition for current cover type.

b. Add an attribute field called CVR_CURR_POST and calculate field to equal CVR_CURR

c. CVR_CURR_POST – Change the current cover post index to match major potential

vegetation if the silvicultural Rx is seed tree, group Select, shelterwood, or OSR

treatment.

i. Change Condition: RX = ST, GS, SW, or OSR, Change CVR_CURR_POST ==

MAJPOTVEG

d. Create a summary table using the summary statistics tool. Input table will be the desired

alternatives union and clipped SLI feature layer. The output table will be designated in

the file directory of your choice. Statistics field = ACRES, Statistic Type = SUM, Case

Field = CVR_CURR. The output table should add up to your respective cumulative effects

or direct effects area. Compare The post-harvest table you created to the current cover

condition table to describe total change in cover type.

99

e. Create a summary table using the summary statistics tool. Input table will be the desired

alternatives union and clipped SLI feature layer. The output table will be designated in

the file directory of your choice. Statistics field = ACRES, Statistic Type = SUM, Case

Field = CVR_CURR and CVR_CURR_POST. The output table should add up to your

respective cumulative effects or direct effects area. This table will tell you which acres

changed from CVR_CURR to CVR_CURR_POST.

8. Age class analysis – Add definition query to input clipped datasets from data prep step that only

show either alternative A, AB, or B depending on the summary table you are building.

a. Create a summary table using the summary statistics tool. Input table will be the desired

alternatives union and clipped SLI feature layer. The output table will be designated in

the file directory of your choice. Statistics field = ACRES, Statistic Type = SUM, Case

Field = AGECLASS. Output table acres should add up to your respective cumulative

effects or direct effects area. This table is your current condition for current cover type.

b. Add an attribute field Called AGECLASS_POST and calculate field to equal AGECLASS.

c. AGECLASS_POST – Change the Age class post index to match 000-039 age class if the

silvicultural Rx is seed tree, clearcut, or OSR treatment.

i. Change Condition: RX = ST, CC, or OSR, Change AGECLASS_POST == ‘000-039’

d. Create a summary table using the summary statistics tool. Input table will be the desired

alternatives union and clipped SLI feature layer. The output table will be designated in

the file directory of your choice. Statistics field = ACRES, Statistic Type = SUM, Case

Field = AGECLASS_POST. The output table should add up to your respective cumulative

effects or direct effects area. Compare The post-harvest table you created to the current

age class table to describe total change in cover type.

e. Create a summary table using the summary statistics tool. Input table will be the desired

alternatives union and clipped SLI feature layer. The output table will be designated in

the file directory of your choice. Statistics field = ACRES, Statistic Type = SUM, Case

Field = AGECLASS and AGECLASS_POST. The output table should add up to your

respective cumulative effects or direct effects area. This table will tell you which acres

changed from AGECLASS to AGECLASS_POST.

9. Old growth analysis – Add definition query to input clipped datasets from data prep step that

only show either alternative A, AB, or B AND to show AGECLASS = Old growth. This will show you

100

only the treated acres that are currently old growth and being treated with some sort of

treatment.

a. Create a summary table using the summary statistics tool. Input table will be the desired

alternatives union and clipped SLI feature layer. Output table will be designated in file

directory of your choice. Statistics field = ACRES, Statistic Type = SUM, Case Field =

AGECLASS. Output table acres should add up to the total acres of old growth in your

respective cumulative effects or direct effects area. This table is your current condition

for old growth cover type.

b. Add an attribute field called OLDGROWTH_POST and calculate field to equal AGECLASS.

c. OLDGROWTH_POST – Change the old growth post index to match 000-039 age class if

the silvicultural Rx is seed tree, clearcut, or OSR treatment. Change the old growth post

index to match ‘200+ years at model run- non old growth’ if the silvicultural RX is

individual tree select, old growth Recruitment, or group select treatment.

i. Change Condition: RX = ST, CC, or OSR, Change OLDGROWTH_POST == ‘000-

039’

ii. Change Condition: RX =ITS, OGR, OSR, Change OLDGROWTH_POST = ‘200+’

d. Create a summary table using the summary statistics tool. Input table will be the desired

alternatives union and clipped SLI feature layer. The output table will be designated in

the file directory of your choice. Statistics field = ACRES, Statistic Type = SUM, Case

Field = OLDGROWTH_POST. The output table should add up to your respective

cumulative effects or direct effects area. Compare The post-harvest table you created to

the current age class table to describe total change in cover type.

e. Create a summary table using the summary statistics tool. Input table will be the desired

alternatives union and clipped SLI feature layer. The output table will be designated in

the file directory of your choice. Statistics field = ACRES, Statistic Type = SUM, Case

Field = AGECLASS and OLDGROWTH_POST. The output table should add up to your

respective cumulative effects or direct effects area. This table will tell you which acres

changed from AGECLASS to Oldgrowth_POST.

f. Create a summary table using the summary statistics tool. Input table will be the desired

alternatives union and clipped SLI feature layer. The output table will be designated in

the file directory of your choice. Statistics field = ACRES, Statistic Type = SUM, Case

Field = CVR_CURR and OLDGROWTH_POST. The output table should add up to your

101

respective cumulative effects or direct effects area. This table will tell you which type of

old growth acres changed within Oldgrowth_POST. *This step will show you non old

growth acres.

g. Create a summary table using the summary statistics tool. Input table will be the desired

alternatives union and clipped SLI feature layer. The output table will be designated in

file directory of your choice. Statistics field = ACRES, Statistic Type = SUM, Case Field =

Defect_Risk. The output table should add up to your respective cumulative effects or

direct effects area. This table will tell you the number of high, medium, and low risk old

growth you will have pre- and post-harvest. This table will add up to the total number of

old growth acres being treated. The high medium and low values will be treated old

growth.

10. Age and cover type patch size analysis- Add definition query to input clipped datasets from data

prep step that only show either alternative A, AB, or B depending on the summary table you are

building. *Cover type follows the same exact process but the CVR_CURR field is the key field

used for the dissolve tool, and a corresponding CVR_CURR_POST field is required to complete

the analysis below. Cover type is not written in steps below.

a. Use the dissolve geoprocessing tool to dissolve the AGECLASS field. Input features = the

queried feature class from step 10. Select appropriate output feature class and location.

Dissolve fields = AGECLASS, statistics field = ACRES, statistic type = SUM. Output

feature class will dissolve adjacent areas with like age class attributes and show all areas

that have like age class attributes as one big multipart polygon.

b. Use the multipart to single part geoprocessing tool to explode the age class field. Input

features = the output from step 10a. Select appropriate output feature class and

location. Output feature class will show all adjacent areas that have like age class

attributes as single part features.

c. Calculate acres for the newly created output feature class from step 10b.

d. Create a summary table using the summary statistics tool. Input table will be the feature

class from 10b. The output table will be designated in the file directory of your choice.

Statistics field = AGECLASS, Statistic Type = MEAN. The output Table should show your

current mean patch size for age class for your respective cumulative effects or direct

effects area.

e. Add an attribute field called AGECLASS_POST and calculate field to equal AGECLASS.

102

f. AGECLASS_POST – Change the age class post index to match 000-039 age class if the

silvicultural Rx is seed tree, clearcut, or OSR treatment.

i. Change Condition: RX = ST, CC, or OSR, Change AGECLASS_POST == ‘000-039’

g. Use the dissolve geoprocessing tool to dissolve the AGECLASS_POST field. Input features

= the queried feature class from step 10. Select appropriate output feature class and

location. Dissolve fields = AGECLASS_POST, statistics field = ACRES, statistic type =

SUM. The output feature class will dissolve adjacent areas with like age class post

attributes and show all areas that have like age class post attributes as one big multipart

polygon.

h. Use the multipart to single part geoprocessing tool to explode the age class post field.

Input features = the output from step 10g. Select appropriate output feature class and

location. Output feature class will show all adjacent areas that have like age class

attributes as single part features.

i. Calculate acres for the newly created output feature class from step 10h.

j. Create a summary table using the summary statistics tool. Input table will be the feature

class from 10h. Output table will be designated in file directory of your choice. Statistics

field = AGECLASS_POST, Statistic Type = MEAN. The output table should show your

current mean patch size for age class post treatment for your respective cumulative

effects or direct effects area.

103

Appendix D: Geoprocessing tools Python script reference

Appendix D serves as a repository of Python scripts that were created to complete specific processes

required by vegetation analysis for an environmental impact statement. The scripts are shown as an

highlighted text copied from and online syntax highlighting service found at (https://tohtml.com/). The

scripting comments above or directly following the lines of executable code show how each line of code

operates and will give the user an idea of which process each part of the script is completing. All scripts

utilize the same column names as well as the domains from the state level PTU’s. This removes the

potential for the code to “break” and allows for quality control and assurance at the time of unit created

in the environmental review process.

Geoprocessing tool Python script 1: vegetation analysis data prep
#Imports arcpy site package to grant user access to geoprocessing tools and

functions.

import arcpy

#allows for updating and overwriting of data in the user defined workspace.

arcpy.env.overwriteOutput = True

#sets variables for workspace and sets user inputs as variables and input

tables.these variables dont have to be utilized but make a more user friendly

and readable code block when running geoprocessing tools below.

DirectFC = arcpy.GetParameterAsText(0) #param0 gets user input to define the

Direct Effects area for use in later code blocks.

CumulativeFC = arcpy.GetParameterAsText(1) #param1 gets user input to define

the Cumulative Effects area for use in later code blocks.

SLIFC = arcpy.GetParameterAsText(2) #param2 gets user input to define the

Stand Level inventory. This should be downloaded from the most current SDE

available from the state K: Drive.

OpenTS = arcpy.GetParameterAsText(3) #param3 gets user input to define a

Current harvest units/ activities that have been proposed. this includes open

harvest sales where updates have not made it to the SLI.

ws = arcpy.GetParameterAsText(4) #param4 gets user input to define the output

location of where updated feature classes will be sent when the tool is

executed.

date = arcpy.GetParameterAsText(5) #param5 gets user input to define the date

when the tool is executed

#Uses for loop to iterate over characters in string from user input 5 (the

date selected for the tool run)

for d in range(len(date)):

 year = date[5:9] #sets variable for year based on position in date list.

expected result should be YYYY ex. (2023) for the year 2023

https://tohtml.com/

104

 day = date[0:1] #sets variable for day based on position in the date

list. expected result should be formatted as MM ex. (1) for January

 month = date[2:4] #sets variable for month based on position in the date

list. expected result should be formatted as DD ex. (12) for the 12th day of

the month

#creates variable for datesring that rearanges elements/characters from the

date list created above. The variable is formatted to follow the EIS naming

conventions.

datestring= (year+day+month)

#clips input from user parameters to clip timberinventory to the designated

cumulative effects area.

CEtimberinventory = arcpy.analysis.Clip(SLIFC, CumulativeFC, ws +

'_CEtimberinventory_'+datestring, '')

#processes the input from CEtimberinventory to delete unneeded fields. this

makes it easier for user to define analysis and also makes the dataset more

manageable. POTENTIALLY NOT THE BEST WAY TO DO THIS.

arcpy.management.DeleteField(CEtimberinventory,

['HAB_GRP','MAJPOTVEG','CVR_CURR','AGECLASS','OG_STATUS','VIGORINDEX','STRUCI

NDEX','SNAGSINDEX','CWDINDEX','STKINDEX','CROWNINDEX','FOGI','TOTSTK','SAWSTK

','SSC','TPA','ACRES','LLTRINDEX'], 'KEEP_FIELDS')

#Unions the current clipped timber inventory with the incomplete timber

sales. This output will become the new SLI inputs for further geoprocessing

tools.

UnionCE = arcpy.analysis.Union([CEtimberinventory,OpenTS], ws +

'_UpdatedCETimberInventory_'+datestring, 'ALL', '', '')

#The following Block of code changes the STRUCINDEX field to meet the

criteria described in the Data freeze Methodology

StrucFLA = arcpy.management.MakeFeatureLayer(UnionCE,'1',where_clause="Rx IN

('Seed Tree', 'OSR')") #Makes temporary feature layer from the UnionCE that

just has the stands that show where Structure index would be affected by Seed

tree or OSR treatment.

arcpy.management.CalculateField(StrucFLA, 'STRUCINDEX', '0' , 'PYTHON3', '',

'', 'ENFORCE_DOMAINS') #Calculates the new field for StrucFLA to be 0 to

represent 1 canopy level for being treated with Seed Tree or OSR RX. See

methodology for reasoning.

StrcFLOGM = arcpy.management.MakeFeatureLayer(UnionCE,'2',where_clause="Rx IN

('OGM')") #Makes temporary feature layer from the UnionCE that just has the

stands that show where Snags index would be affected by Seed tree or OSR

treatment.

arcpy.management.CalculateField(StrcFLOGM,

'STRUCINDEX','2','PYTHON3','','','ENFORCE_DOMAINS') #Calculates the new field

for StrucFLA to be 2 to represent 3 or more canopy level for being treated

with old growth maintenance RX. See methodology for reasoning.

#the following Block of code changes the SNAGSINDEX field to meet the

criteria described in the Data freeze methodology

SnagFLA = arcpy.management.MakeFeatureLayer(UnionCE,'3',where_clause = "Rx

NOT IN ('')")#Makes temporary feature layer from unionCE that shows snags

105

index would be affected by all treatments. Anything that is treated will have

snags post treatment.

arcpy.management.CalculateField(SnagFLA, 'SNAGSINDEX',

'2','PYTHON3','','','ENFORCE_DOMAINS')#Calculates the new field for

SnagsIndex to be 2 to represent "some snags" in each of the treated stands.

#the following Block of code changes the CWDINDEX field to meet the criteria

described in the Data freeze methodology

CWDFLA = arcpy.management.MakeFeatureLayer(UnionCE,'4',where_clause = "Rx NOT

IN ('')")#Makes temporary feature layer from unionCE that shows coarse woody

debris index would be affected by all treatments.

#the following Block of code changes the STKINDEX field to meet the criteria

described in the Data freeze methodology

STKFLA = arcpy.management.MakeFeatureLayer(UnionCE,'5',where_clause ="Rx IN

('Seed Tree', 'OSR')")#Makes temporary feature layer from unionCE that shows

stocking index would be affected by all treatments.

arcpy.management.CalculateField(STKFLA, 'STKINDEX',

'0','PYTHON3','','','ENFORCE_DOMAINS')#treatments with ST and OSR will have

'0' or less than one load/acre stocking post treatment

STKFLB = arcpy.management.MakeFeatureLayer(UnionCE,'6',where_clause ="Rx IN

('Shelterwood', 'ITS')")#Makes temporary feature layer from unionCE that

shows stocking index would be affected by all treatments.

arcpy.management.CalculateField(STKFLB, 'STKINDEX',

'1','PYTHON3','','','ENFORCE_DOMAINS')#treatments with Shelterwood or ITS

will have around 1 load/acre stocking post treatment

STKFLC = arcpy.management.MakeFeatureLayer(UnionCE,'7',where_clause ="RX IN

('OGM','Group Select')")#Makes temporary feature layer from unionCE that

shows stocking index would be affected by all treatments.

arcpy.management.CalculateField(STKFLC, 'STKINDEX', '3',

'PYTHON3','','','ENFORCE_DOMAINS')#treatments with OGM and GS will have

around 2 loads/acre stocking post treatment

#the following block of code changes the CROWNINDEX field to meet the

criteria described in the data freeze methodology.

CROWNFLA = arcpy.management.MakeFeatureLayer(UnionCE,'8',where_clause ="RX IN

('OGM','Commercial Thin','Group Select')")#Makes temporary feature layer from

unionCE that shows crown index would be affected by all treatments.

arcpy.management.CalculateField(CROWNFLA, 'CROWNINDEX', '2',

'PYTHON3','','','ENFORCE_DOMAINS') #anything treated with above treatments

will have code '2' or medium stocking post treatment.

CROWNFLB = arcpy.management.MakeFeatureLayer(UnionCE,'9',where_clause ="RX IN

('Seed Tree','Shelterwood','OSR')")#Makes temporary feature layer from

unionCE that shows crown index would be affected by all treatments. Anything

that is treated will have snags post treatment.

arcpy.management.CalculateField(CROWNFLB, 'CROWNINDEX', '0',

'PYTHON3','','','ENFORCE_DOMAINS')#anything treated with above treatments

will have code '0' or low stocking post treatment.

106

#the following block of code changes the FOGI field to meet the criteria

described in the data freeze methodology.

FOGIFLA = arcpy.management.MakeFeatureLayer(UnionCE,'10',where_clause = "Rx

NOT IN ('')") #Makes temporary feature layer from unionCE that shows crown

index would be affected by all treatments.

arcpy.management.CalculateField(FOGIFLA, 'FOGI', '!VIGORINDEX! + !STRUCINDEX!

+ !SNAGSINDEX! + !CWDINDEX! + !LLTRINDEX! + !STKINDEX! +

!CROWNINDEX!','PYTHON3','','','ENFORCE_DOMAINS')#calculate field adds all of

the index class to show a final FOGI based on the above treatments.

#the following block of code changes the TOTSTK field to meet the criteria

described in the data freeze methodology.

TOTSTKFLA = arcpy.management.MakeFeatureLayer(UnionCE,'11',where_clause ="RX

IN ('Seed Tree','OSR','Clear Cut')") #Makes temporary feature layer from

unionCE that shows total stocking would be affected by all treatments.

arcpy.management.CalculateField(TOTSTKFLA, 'TOTSTK', str("'P'"),

'PYTHON3','','','')#anything in even aged management regime described above

is changed to poor total stocking post treatment.

TOTSTKFLB = arcpy.management.MakeFeatureLayer(UnionCE,'12',where_clause ="Rx

NOT IN ('','Seed Tree','OSR','Clear Cut')") #Makes temporary feature layer

from unionCE that shows how total stocking would be affected by all

treatments.

arcpy.management.CalculateField(TOTSTKFLB, 'TOTSTK',"'M'",

'PYTHON3','','','')#anything not in even aged management regime is changed to

medium total stocking post treatment.

#the following block of code changes the SAWSTK field to meet the criteria

described in the data freeze methodology.

SAWSTKFLA = arcpy.management.MakeFeatureLayer(UnionCE,'13',where_clause ="RX

IN ('Seed Tree','OSR','Clear Cut')")#Makes temporary feature layer from

unionCE that shows saw stocking would be affected by all treatments.

arcpy.management.CalculateField(SAWSTKFLA, 'SAWSTK',"'P'",

'PYTHON3','','','')#anything under an even aged management regime would be

changed to poor saw stocking post treatment.

SAWSTKFLB = arcpy.management.MakeFeatureLayer(UnionCE,'14',where_clause ="Rx

NOT IN ('','Seed Tree','OSR','Clear Cut')")#Makes temporary feature layer

from unionCE that shows saw stocking index would be affected by all

treatments.

arcpy.management.CalculateField(SAWSTKFLB, 'SAWSTK', "'M'",

'PYTHON3','','','') #anything not in even aged management regime is changed

to medium saw stocking post treatment.

#the following block of code changes the SSC field to meet the criteria

described in the data freeze methodology.

SSCFLA = arcpy.management.MakeFeatureLayer(UnionCE,'15',where_clause ="RX IN

('OSR')")#Makes temporary feature layer from unionCE that shows how forest

stand size class would be affected by all treatments.

107

arcpy.management.CalculateField(SSCFLA, 'SSC', '7',

'PYTHON3','','','ENFORCE_DOMAINS')#anything treated with overstory removal

treatment would be considered seedling sapling or ssc= '7'

#the following block of code changes the TPA field to meet the criteria

described in the data freeze methodology.

TPAFLA = arcpy.management.MakeFeatureLayer(UnionCE,'16',where_clause ="RX IN

('OSR')")#Makes temporary feature layer from unionCE that shows how trees per

acre left would be affected by all treatments. Anything that is treated will

have snags post treatment.

arcpy.management.CalculateField(TPAFLA, 'TPA', '350',

'PYTHON3','','','ENFORCE_DOMAINS')#esentially this turns the tpa into 350 for

OSR treatments. This sets the precedent that we need at least 350 TPA before

considering an overstory removal treatment.

#the following block of code changes the AGECLASS field to meet the criteria

described in the data freeze methodology.

AGECLASSFLA = arcpy.management.MakeFeatureLayer(UnionCE,'17',where_clause

="RX IN ('Seed Tree','OSR','Clear Cut')")#Makes temporary feature layer from

unionCE that shows how ageclass would be affected by all treatments. Anything

that is treated will have snags post treatment.

arcpy.management.CalculateField(AGECLASSFLA, 'AGECLASS', "'000-039'",

'PYTHON3','','','')#anything in the even aged management regime would be

considered 'reset' and the new age class would be 000-039 years of age. other

treatments would retain all of their current age attributes.

UnionDE = arcpy.analysis.Clip(UnionCE,DirectFC, ws +

'_UpdatedDETimberInventory_'+datestring,'') #this clip just takes data from

the cumulative effects area and puts it into the direct effects area. USER

NOTE, PROJECT AREA WILL NEED TO DIRECTLY COINCIDE OR FALL WITHIN PROJECT AREA

TO BE ACCURATE. this goes last because the source dataset has been updated

over various lines of code above.

arcpy.management.DeleteField(UnionDE,'Rx') #deletes the rx attribute field

from the final unionde feature class because further timber sale/ treatment

units will be added to the sli later.

arcpy.management.DeleteField(UnionCE,'Rx') #deletes the rx attribute field

from the final unionde feature class because further timber sale/ treatment

units will be added to the sli later.

108

Geoprocessing tool Python script 2: Habitat type group analysis (current condition)

import arcpy

arcpy.env.overwriteOutput = True #Allows existing datasets in the workspace

environment to be overwritten.

ProjectAreaFC = arcpy.GetParameterAsText(0) #Gets user input to set the

Direct Effects area updated timber inventory.

CumulativeFC = arcpy.GetParameterAsText(1) #Gets user input to set the Direct

Effects area updated timber invnentory.

OutFile = arcpy.GetParameterAsText(2) #Gets user input to set the output file

location and name for the Direct Effects Project Area.

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(ProjectAreaFC,[["ACRES","AREA"]]

,"","ACRES")#function parameters calculate acres field with acres.

arcpy.management.CalculateGeometryAttributes(CumulativeFC,[["ACRES","AREA"]],

"","ACRES")#function parameters calculate acres field with acres.

#summarizes acres of habitat type groups for project area and cumulative

effects area

intablePA =

arcpy.analysis.Statistics(ProjectAreaFC,"Current_Habitat_Type_DE",[["ACRES","

SUM"]],["HAB_GRP"]) #Creates variable that holds the non-spatial table for

Direct Effects project area. Parameters sum the acres from the acres field

based on the Habitat Type Group Field.

intableCU =

arcpy.analysis.Statistics(CumulativeFC,"Current_Habitat_Type_CE",[["ACRES","S

UM"]],["HAB_GRP"]) #Creates variable that holds the non-spatial table for

Cumulative Effects Project area. Parameters sum the acres from the acres

field based on the Habitat Type Group Field.

#Converts non spatial tables from above block of code into Excel files for ID

team use.

arcpy.conversion.TableToExcel([intablePA,intableCU],OutFile,'ALIAS','DESCRIPT

ION') #Parameters from function set "in" non spatial table, the output file

path/location, and (ALIAS, DESCRIPTION) export row headers and domain names

for field attributes into the final excel table.

arcpy.management.Delete(intablePA) #Declutters the home environment of the

non spatial summary tables once the excel files are created.

arcpy.management.Delete(intableCU)#Declutters the home environment of the non

spatial summary tables once the excel files are created.

109

Geoprocessing tool Python script 3: Desired future condition analysis (current condition)

import arcpy

arcpy.env.overwriteOutput = True #Allows existing datasets in the workspace

environment to be overwritten.

ProjectAreaFC = arcpy.GetParameterAsText(0) #Gets user input to set the

Direct Effects area updated timber inventory.

CumulativeFC = arcpy.GetParameterAsText(1) #Gets user input to set the Direct

Effects area updated timber invnentory.

OutFile = arcpy.GetParameterAsText(2) #Gets user input to set the output file

location and name for the Direct Effects Project Area.

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(ProjectAreaFC,[["ACRES","AREA"]]

,"","ACRES")#function parameters calculate acres field with acres.

arcpy.management.CalculateGeometryAttributes(CumulativeFC,[["ACRES","AREA"]],

"","ACRES")#function parameters calculate acres field with acres.

#summarizes acres of habitat type groups for project area and cumulative

effects area

intablePA =

arcpy.analysis.Statistics(ProjectAreaFC,"Current_Preferred_Vegetation_DE",[["

ACRES","SUM"]],["MAJPOTVEG"]) #Creates variable that holds the non-spatial

table for Direct Effects project area. Parameters sum the acres from the

acres field based on the Habitat Type Group Field.

intableCU =

arcpy.analysis.Statistics(CumulativeFC,"Current_Preferred_Vegetation_CE",[["A

CRES","SUM"]],["MAJPOTVEG"]) #Creates variable that holds the non-spatial

table for Cumulative Effects Project area. Parameters sum the acres from the

acres field based on the Habitat Type Group Field.

#Converts non spatial tables from above block of code into Excel files for ID

team use.

arcpy.conversion.TableToExcel([intablePA,intableCU],OutFile,'ALIAS','DESCRIPT

ION') #Parameters from function set "in" non spatial table, the output file

path/location, and (ALIAS, DESCRIPTION) export row headers and domain names

for field attributes into the final excel table.

arcpy.management.Delete(intablePA) #Declutters the home environment of the

non spatial summary tables once the excel files are created.

arcpy.management.Delete(intableCU)#Declutters the home environment of the non

spatial summary tables once the excel files are created.

110

Geoprocessing tool Python script 4: Current cover analysis (current condition and post

treatment condition)

import arcpy

#sets variables for workspace allows overwrite/output in workspace, sets user

inputs as variables and input tables.

arcpy.env.overwriteOutput = True #allows for overwrite output within the home

workspace.

arcpy.env.transferDomains = True #sets home environment to transfer domain

names and descriptions automatically. this creates a more user friendly

experience in the final output tables.

DEbase = arcpy.GetParameterAsText(0) #user input Direct effects area timber

inventory. Should be "updatedDEtimberinventory_DATE" output from vegetation

analysis Data Prep

CEbase = arcpy.GetParameterAsText(1)#user input Cumulative effects area

timber inventory. Should be "updatedCEtimberinventory_DATE" output from

vegetation analysis Data Prep

OutFile = arcpy.GetParameterAsText(2) #user input Excel file name for output

tables. All tables will be passed to this outfile

NewTreatmentA = arcpy.GetParameterAsText(3) #user defined Alternative A

treatment units.

NewTreatmentB = arcpy.GetParameterAsText(4) #user defined Alternative B

treatment Units.

ProjectAreaFCA =

arcpy.analysis.Union([DEbase,NewTreatmentA],'Updated_SLI_CoverType_DE_AltA')

#unions Alternative A treatment units to the updated DE timber inventory

CumulativeFCA =

arcpy.analysis.Union([CEbase,NewTreatmentA],'Updated_SLI_CoverType_CE_AltA')

#unions Alternative A treatment units to the updated CE timber inventory

ProjectAreaFCB =

arcpy.analysis.Union([DEbase,NewTreatmentB],'Updated_SLI_CoverType_DE_AltB')

#unions Alternative B treatment units to the update DE timber inventory

CumulativeFCB =

arcpy.analysis.Union([CEbase,NewTreatmentB],'Updated_SLI_CoverType_CE_AltB')

#unions Alterative B treatment units to the updated CE timber inventory

#Creates post treatment cover field and gives it a user friendly alias for

reporting in an excel table later.

arcpy.management.CalculateField(ProjectAreaFCA,

'CVR_CURR_POST','!CVR_CURR!','PYTHON3','','','ENFORCE_DOMAINS') #calculates

new field called CVR_CURR_POST to hold changes to current cover for DE

alternative A.

arcpy.management.CalculateField(CumulativeFCA,

'CVR_CURR_POST','!CVR_CURR!','PYTHON3','','','ENFORCE_DOMAINS') #Calculates

new field called CVR_CURR_POST to hold changes to the current cover for CE

alternative A.

arcpy.management.AlterField(ProjectAreaFCA,'CVR_CURR_POST',new_field_alias =

"Cover Type Post Treatment") #gives new field an easier to read alias.

arcpy.management.AlterField(CumulativeFCA,'CVR_CURR_POST',new_field_alias =

"Cover Type Post Treatment") #gives new field an easier to read alias.

111

#Creates post treatment cover field and gives it a user friendly alias for

reporting in an excel table later. #READ COMMENT FIELDS ABOVE, THIS PROCESS

DOES THE SAME THING FOR ALTERNATIVE B

arcpy.management.CalculateField(ProjectAreaFCB,

'CVR_CURR_POST','!CVR_CURR!','PYTHON3','','','ENFORCE_DOMAINS')#calculates

new field called CVR_CURR_POST to hold changes to current cover for DE

alternative B.

arcpy.management.CalculateField(CumulativeFCB,

'CVR_CURR_POST','!CVR_CURR!','PYTHON3','','','ENFORCE_DOMAINS')#Calculates

new field called CVR_CURR_POST to hold changes to the current cover for CE

alternative B.

arcpy.management.AlterField(ProjectAreaFCB,'CVR_CURR_POST',new_field_alias =

"Cover Type Post Treatment")#gives new field an easier to read alias.

arcpy.management.AlterField(CumulativeFCB,'CVR_CURR_POST',new_field_alias =

"Cover Type Post Treatment")#gives new field an easier to read alias.

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(ProjectAreaFCA,[["ACRES","AREA"]

],"","ACRES")

arcpy.management.CalculateGeometryAttributes(CumulativeFCA,[["ACRES","AREA"]]

,"","ACRES")

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(ProjectAreaFCB,[["ACRES","AREA"]

],"","ACRES")

arcpy.management.CalculateGeometryAttributes(CumulativeFCB,[["ACRES","AREA"]]

,"","ACRES")

#the following Block of code changes the CVR_CURR_POST field to meet the

criteria described in the Data freeze methodology for the direct effects area

CVRPOSTFLDEA =

arcpy.management.MakeFeatureLayer(ProjectAreaFCA,'1',where_clause ="Rx IN

('Seed Tree','Group Select','Shelterwood', 'OSR')") #uses temporary feature

layer to select affected treatments.

arcpy.management.CalculateField(CVRPOSTFLDEA, 'CVR_CURR_POST',

'!MAJPOTVEG!','PYTHON3','','','ENFORCE_DOMAINS') #changes current cover post

field to equal major potential vegetation based on criteria above.

#the following Block of code changes the CVR_CURR_POST field to meet the

criteria described in the Data freeze methodology for the direct effects area

CVRPOSTFLDEB =

arcpy.management.MakeFeatureLayer(ProjectAreaFCB,'2',where_clause ="Rx IN

('Seed Tree','Group Select','Shelterwood', 'OSR')")#uses temporary feature

layer to select affected treatments.

arcpy.management.CalculateField(CVRPOSTFLDEB, 'CVR_CURR_POST',

'!MAJPOTVEG!','PYTHON3','','','ENFORCE_DOMAINS') #changes current cover post

field to equal major potential vegetation based on criteria above.

#the following Block of code changes the CVR_CURR_POST field to meet the

criteria described in the Data freeze methodology

CVRPOSTFLCEA =

arcpy.management.MakeFeatureLayer(CumulativeFCA,'3',where_clause ="Rx IN

112

('Seed Tree','Group Select','Shelterwood', 'OSR')")#uses temporary feature

layer to select affected treatments.

arcpy.management.CalculateField(CVRPOSTFLCEA, 'CVR_CURR_POST',

'!MAJPOTVEG!','PYTHON3','','','ENFORCE_DOMAINS') #changes current cover post

field to equal major potential vegetation based on criteria above.

#the following Block of code changes the CVR_CURR_POST field to meet the

criteria described in the Data freeze methodology

CVRPOSTFLCEB =

arcpy.management.MakeFeatureLayer(CumulativeFCB,'4',where_clause ="Rx IN

('Seed Tree','Group Select','Shelterwood', 'OSR')")#uses temporary feature

layer to select affected treatments.

arcpy.management.CalculateField(CVRPOSTFLCEB, 'CVR_CURR_POST',

'!MAJPOTVEG!','PYTHON3','','','ENFORCE_DOMAINS') #changes current cover post

field to equal major potential vegetation based on criteria above.

#summarizes acres of Current Cover for project area and cumulative effects

area

CurrentCoverDEA =

arcpy.analysis.Statistics(ProjectAreaFCA,"Alt_A_Current_Cover_DE",[["ACRES","

SUM"]],["CVR_CURR"])

CurrentCoverCEA =

arcpy.analysis.Statistics(CumulativeFCA,"Alt_A_Current_Cover_CE",[["ACRES","S

UM"]],["CVR_CURR"])

#summarizes acres of Current Cover for project area and cumulative effects

area

CurrentCoverDEB =

arcpy.analysis.Statistics(ProjectAreaFCB,"Alt_B_Current_Cover_DE",[["ACRES","

SUM"]],["CVR_CURR"])

CurrentCoverCEB =

arcpy.analysis.Statistics(CumulativeFCB,"Alt_B_Current_Cover_CE",[["ACRES","S

UM"]],["CVR_CURR"])

#summarizes acres of Current cover post treatment for project area and

cumulative effects area

PostCoverDEA =

arcpy.analysis.Statistics(ProjectAreaFCA,'Alt_A_Post_Cover_DE',[["ACRES","SUM

"]],["CVR_CURR_POST"])

PostCoverCEA =

arcpy.analysis.Statistics(CumulativeFCA,'Alt_A_Post_Cover_CE',[["ACRES","SUM"

]],["CVR_CURR_POST"])

#summarizes acres of Current cover post treatment for project area and

cumulative effects area

PostCoverDEB =

arcpy.analysis.Statistics(ProjectAreaFCB,'Alt_B_Post_Cover_DE',[["ACRES","SUM

"]],["CVR_CURR_POST"])

PostCoverCEB =

arcpy.analysis.Statistics(CumulativeFCB,'Alt_B_Post_Cover_CE',[["ACRES","SUM"

]],["CVR_CURR_POST"])

#Summarizes acres of current cover post treatment and current cover so users

can quantify the change in acreage between old and new cover types.

113

PostCoverCHANGEDEA =

arcpy.analysis.Statistics(ProjectAreaFCA,'Alt_A_Post_Change_DE',[["ACRES","SU

M"]],["CVR_CURR","CVR_CURR_POST"])

PostCoverCHANGECEA =

arcpy.analysis.Statistics(CumulativeFCA,'Alt_A_Post_Change_CE',[["ACRES","SUM

"]],["CVR_CURR","CVR_CURR_POST"])

#Summarizes acres of current cover post treatment and current cover so users

can quantify the change in acreage between old and new cover types.

PostCoverCHANGEDEB =

arcpy.analysis.Statistics(ProjectAreaFCB,'Alt_B_Post_Change_DE',[["ACRES","SU

M"]],["CVR_CURR","CVR_CURR_POST"])

PostCoverCHANGECEB =

arcpy.analysis.Statistics(CumulativeFCB,'Alt_B_Post_Change_CE',[["ACRES","SUM

"]],["CVR_CURR","CVR_CURR_POST"])

#exports tables to excel

arcpy.conversion.TableToExcel([CurrentCoverDEA,PostCoverDEA,PostCoverCHANGEDE

A,CurrentCoverDEB,PostCoverDEB,PostCoverCHANGEDEB,CurrentCoverCEA,PostCoverCE

A,PostCoverCHANGECEA,CurrentCoverCEB,PostCoverCEB,PostCoverCHANGECEB],OutFile

,'ALIAS','DESCRIPTION') # this piece uses the table to excel function to

output the summary tables into the final resting place for the output excel

file. Each variable will show up as the workbook name in the excel file.

#following block deletes all summary tables that were used to export to

excels as well as deleting the project area and cumulative area feature

classes. These feature classes will not be used for mapping purposes in the

environmental impact statement.

arcpy.management.Delete(CurrentCoverDEA)

arcpy.management.Delete(CurrentCoverCEA)

arcpy.management.Delete(PostCoverDEA)

arcpy.management.Delete(PostCoverCEA)

arcpy.management.Delete(PostCoverCHANGEDEA)

arcpy.management.Delete(PostCoverCHANGECEA)

arcpy.management.Delete(CurrentCoverDEB)

arcpy.management.Delete(CurrentCoverCEB)

arcpy.management.Delete(PostCoverDEB)

arcpy.management.Delete(PostCoverCEB)

arcpy.management.Delete(PostCoverCHANGEDEB)

arcpy.management.Delete(PostCoverCHANGECEB)

arcpy.management.Delete([ProjectAreaFCA,CumulativeFCA,ProjectAreaFCB,Cumulati

veFCB])

114

Geoprocessing tool Python script 5: Forest age class analysis (current condition and post

treatment condition)
import arcpy

#sets variables for workspace allows overwrite/output in workspace, sets user

inputs as variables and input tables.

arcpy.env.overwriteOutput = True

arcpy.env.transferDomains = True

DEbase = arcpy.GetParameterAsText(0) #gets the user input parameter of the

Direct Effects Area Updated timber Inventory, This serves as the Base layer

for further analysis in this script for Direct Effects (DE).

CEbase = arcpy.GetParameterAsText(1) #gets the user input parameter of the

Cumulative Effects Area Updated timber Inventory, This serves as the Base

layer for further analysis in this script for Cumulative Effects (DE).

OutFile = arcpy.GetParameterAsText(2) #gets the user input parameter of the

file path and name for the output excel files. All summary tables will be

written to this location later in the script.

NewTreatmentA = arcpy.GetParameterAsText(3) #gets the user input parameter of

Alternative A treatments.

NewTreatmentB = arcpy.GetParameterAsText(4) #gets the user input parameter of

Alternative B treatments.

ProjectAreaFCA =

arcpy.analysis.Union([DEbase,NewTreatmentA],'Updated_SLI_AgeClass_DE_AltA')

#unions the Alt A treatments to the input base inventory layer for the Direct

Effects Area

CumulativeFCA =

arcpy.analysis.Union([CEbase,NewTreatmentA],'Updated_SLI_AgeClass_CE_AltA')

#unions the Alt A treaments to the input base inventory layer for the

Cumulative Effects Area

ProjectAreaFCB =

arcpy.analysis.Union([DEbase,NewTreatmentB],'Updated_SLI_AgeClass_DE_AltB')

#unions the Alt B treatments to the input base inventory layer for the Direct

Effects Area

CumulativeFCB =

arcpy.analysis.Union([CEbase,NewTreatmentB],'Updated_SLI_AgeClass_CE_AltB')

#unions the Alt B treatments to the input base inventory layer for the

Cumulative Effects Area

#Creates post treatment cover field and gives it a user friendly alias for

reporting in an excel table later.

arcpy.management.CalculateField(ProjectAreaFCA,

'AGECLASS_POST','!AGECLASS!','PYTHON3','','','ENFORCE_DOMAINS')

arcpy.management.CalculateField(CumulativeFCA,

'AGECLASS_POST','!AGECLASS!','PYTHON3','','','ENFORCE_DOMAINS')

arcpy.management.AlterField(ProjectAreaFCA,'AGECLASS_POST',new_field_alias =

"Age Class Post Treatment")

arcpy.management.AlterField(CumulativeFCA,'AGECLASS_POST',new_field_alias =

"Age Class Post Treatment")

#Creates post treatment cover field and gives it a user friendly alias for

reporting in an excel table later.

arcpy.management.CalculateField(ProjectAreaFCB,

'AGECLASS_POST','!AGECLASS!','PYTHON3','','','ENFORCE_DOMAINS')

115

arcpy.management.CalculateField(CumulativeFCB,

'AGECLASS_POST','!AGECLASS!','PYTHON3','','','ENFORCE_DOMAINS')

arcpy.management.AlterField(ProjectAreaFCB,'AGECLASS_POST',new_field_alias =

"Age Class Post Treatment")

arcpy.management.AlterField(CumulativeFCB,'AGECLASS_POST',new_field_alias =

"Age Class Post Treatment")

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(ProjectAreaFCA,[["ACRES","AREA"]

],"","ACRES")

arcpy.management.CalculateGeometryAttributes(CumulativeFCA,[["ACRES","AREA"]]

,"","ACRES")

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(ProjectAreaFCB,[["ACRES","AREA"]

],"","ACRES")

arcpy.management.CalculateGeometryAttributes(CumulativeFCB,[["ACRES","AREA"]]

,"","ACRES")

#the following Block of code changes the AGECLASS_POST field to meet the

criteria described in the Data freeze methodology for the direct effects area

alternative A

AGEPOSTFLDEA =

arcpy.management.MakeFeatureLayer(ProjectAreaFCA,'1',where_clause ="Rx IN

('Seed Tree','Clearcut','OSR')") #areas with seed tree clearcut and OSR

treatments will be changed to 000-039 age classification

arcpy.management.CalculateField(AGEPOSTFLDEA, 'AGECLASS_POST',"'0 to 39 years

at model run'",'PYTHON3','','','')

#the following Block of code changes the AGECLASS_POST field to meet the

criteria described in the Data freeze methodology for the direct effects area

alternative B

AGEPOSTFLDEB =

arcpy.management.MakeFeatureLayer(ProjectAreaFCB,'2',where_clause ="Rx IN

('Seed Tree','Clearcut','OSR')")#areas with seed tree clearcut and OSR

treatments will be changed to 000-039 age classification

arcpy.management.CalculateField(AGEPOSTFLDEB, 'AGECLASS_POST',"'0 to 39 years

at model run'",'PYTHON3','','','')

#the following Block of code changes the AGECLASS_POST field to meet the

criteria described in the Data freeze methodology for the cumulative effects

area alternative A

AGEPOSTFLCEA =

arcpy.management.MakeFeatureLayer(CumulativeFCA,'3',where_clause ="Rx IN

('Seed Tree','Clearcut','OSR')")#areas with seed tree clearcut and OSR

treatments will be changed to 000-039 age classification

arcpy.management.CalculateField(AGEPOSTFLCEA, 'AGECLASS_POST',"'0 to 39 years

at model run'",'PYTHON3','','','')

#the following Block of code changes the AGECLASS_POST field to meet the

criteria described in the Data freeze methodology for the cumulative effects

area alternative B

AGEPOSTFLCEB =

arcpy.management.MakeFeatureLayer(CumulativeFCB,'4',where_clause ="Rx IN

116

('Seed Tree','Clearcut','OSR')")#areas with seed tree clearcut and OSR

treatments will be changed to 000-039 age classification

arcpy.management.CalculateField(AGEPOSTFLCEB, 'AGECLASS_POST',"'0 to 39 years

at model run'",'PYTHON3','','','')

#summarizes acres of age class for project area and cumulative effects area

these variables will then be passed to the table to excel function below.

These can be deleted post script.

CurrentAgeDEA =

arcpy.analysis.Statistics(ProjectAreaFCA,"ALTA_Current_Ageclass_DE",[["ACRES"

,"SUM"]],["AGECLASS"])

CurrentAgeCEA =

arcpy.analysis.Statistics(CumulativeFCA,"ALTA_Current_Ageclass_CE",[["ACRES",

"SUM"]],["AGECLASS"])

#summarizes acres of age class for project area and cumulative effects area

these variables will then be passed to the table to excel function below.

These can be deleted post script.

CurrentAgeDEB =

arcpy.analysis.Statistics(ProjectAreaFCB,"ALTB_Current_Ageclass_DE",[["ACRES"

,"SUM"]],["AGECLASS"])

CurrentAgeCEB =

arcpy.analysis.Statistics(CumulativeFCB,"ALTB_Current_Ageclass_CE",[["ACRES",

"SUM"]],["AGECLASS"])

#summarizes acres of age class post treatment for project area and cumulative

effects area these variables will then be passed to the table to excel

function below. These can be deleted post script.

PostAgeDEA =

arcpy.analysis.Statistics(ProjectAreaFCA,'ALTA_Post_Ageclass_DE',[["ACRES","S

UM"]],["AGECLASS_POST"])

PostAgeCEA =

arcpy.analysis.Statistics(CumulativeFCA,'ALTA_Post_Ageclass_CE',[["ACRES","SU

M"]],["AGECLASS_POST"])

#summarizes acres of age class post treatment for project area and cumulative

effects area these variables will then be passed to the table to excel

function below. These can be deleted post script.

PostAgeDEB =

arcpy.analysis.Statistics(ProjectAreaFCB,'ALTB_Post_Ageclass_DE',[["ACRES","S

UM"]],["AGECLASS_POST"])

PostAgeCEB =

arcpy.analysis.Statistics(CumulativeFCB,'ALTB_Post_Ageclass_CE',[["ACRES","SU

M"]],["AGECLASS_POST"])

#summarizes acres of age class post treatment and for age class current for

project area and cumulative effects area these variables will then be passed

to the table to excel function below. The resulting table will show the

change in acreage between pre existing condition and post harvest condition.

These can be deleted post script.

PostAgeCHANGEDEA =

arcpy.analysis.Statistics(ProjectAreaFCA,'ALTA_Post_Change_Ageclass_DE',[["AC

RES","SUM"]],["AGECLASS","AGECLASS_POST"])

PostAgeCHANGECEA =

arcpy.analysis.Statistics(CumulativeFCA,'ALTA_Post_Change_Ageclass_CE',[["ACR

ES","SUM"]],["AGECLASS","AGECLASS_POST"])

117

#summarizes acres of age class post treatment for project area and cumulative

effects area these variables will then be passed to the table to excel

function below. The resulting table will show the change in acreage between

pre existing condition and post harvest condition. These can be deleted post

script.

PostAgeCHANGEDEB =

arcpy.analysis.Statistics(ProjectAreaFCB,'ALTB_Post_Change_Ageclass_DE',[["AC

RES","SUM"]],["AGECLASS","AGECLASS_POST"])

PostAgeCHANGECEB =

arcpy.analysis.Statistics(CumulativeFCB,'ALTB_Post_Change_Ageclass_CE',[["ACR

ES","SUM"]],["AGECLASS","AGECLASS_POST"])

#exports tables to excel by using the table to excel function. All excel

tables will be output into individual workbooks within the outfile variable

set by the user. Alias and Description allow the domain names and

descriptions to be passed into the excel file so that it is easier to

understand.

arcpy.conversion.TableToExcel([CurrentAgeDEA,PostAgeDEA,PostAgeCHANGEDEA,Curr

entAgeDEB,PostAgeDEB,PostAgeCHANGEDEB,CurrentAgeCEA,PostAgeCEA,PostAgeCHANGEC

EA,CurrentAgeCEB,PostAgeCEB,PostAgeCHANGECEB],OutFile,'ALIAS','DESCRIPTION')

#uses the arcpy management delete function to get rid of all intermediate and

final feature classes and non spatial tables that are already exported to the

final excel outfile location.

arcpy.management.Delete(CurrentAgeDEA)

arcpy.management.Delete(CurrentAgeCEA)

arcpy.management.Delete(PostAgeDEA)

arcpy.management.Delete(PostAgeCEA)

arcpy.management.Delete(PostAgeCHANGEDEA)

arcpy.management.Delete(PostAgeCHANGECEA)

arcpy.management.Delete(CurrentAgeDEB)

arcpy.management.Delete(CurrentAgeCEB)

arcpy.management.Delete(PostAgeDEB)

arcpy.management.Delete(PostAgeCEB)

arcpy.management.Delete(PostAgeCHANGEDEB)

arcpy.management.Delete(PostAgeCHANGECEB)

arcpy.management.Delete(ProjectAreaFCA)

arcpy.management.Delete(CumulativeFCA)

arcpy.management.Delete(ProjectAreaFCB)

arcpy.management.Delete(CumulativeFCB)

118

Geoprocessing tool Python script 6: Forest old growth analysis (current condition and

post treatment condition)
import arcpy

#sets variables for workspace allows overwrite/output in workspace, sets user

inputs as variables and input tables.

arcpy.env.overwriteOutput = True

arcpy.env.transferDomains = True

DEbase = arcpy.GetParameterAsText(0)#gets the user input parameter of the

Direct Effects Area Updated timber Inventory, This serves as the Base layer

for further analysis in this script for Direct Effects (DE).

CEbase = arcpy.GetParameterAsText(1)#gets the user input parameter of the

Cumulative Effects Area Updated timber Inventory, This serves as the Base

layer for further analysis in this script for Cumulative Effects (DE).

OutFile = arcpy.GetParameterAsText(2)#gets the user input parameter of the

file path and name for the output excel files. All summary tables will be

written to this location later in the script.

NewTreatmentA = arcpy.GetParameterAsText(3)#gets the user input parameter of

Alternative A treatments.

NewTreatmentB = arcpy.GetParameterAsText(4)#gets the user input parameter of

Alternative B treatments.

ProjectAreaFCA =

arcpy.analysis.Union([DEbase,NewTreatmentA],'Updated_SLI_Oldgrowth_DE_AltA')#

unions the Alt A treatments to the input base inventory layer for the Direct

Effects Area

CumulativeFCA =

arcpy.analysis.Union([CEbase,NewTreatmentA],'Updated_SLI_Oldgrowth_CE_AltA')#

unions the Alt A treaments to the input base inventory layer for the

Cumulative Effects Area

ProjectAreaFCB =

arcpy.analysis.Union([DEbase,NewTreatmentB],'Updated_SLI_Oldgrowth_DE_AltB')

#unions the Alt B treatments to the input base inventory layer for the Direct

Effects Area

CumulativeFCB =

arcpy.analysis.Union([CEbase,NewTreatmentB],'Updated_SLI_Oldgrowth_CE_AltB')#

unions the Alt B treatments to the input base inventory layer for the

Cumulative Effects Area

#Creates post treatment cover field and gives it a user friendly alias for

reporting in an excel table later.

arcpy.management.CalculateField(ProjectAreaFCA,

'OLDGROWTH_POST','!AGECLASS!','PYTHON3','','','ENFORCE_DOMAINS')

arcpy.management.CalculateField(CumulativeFCA,

'OLDGROWTH_POST','!AGECLASS!','PYTHON3','','','ENFORCE_DOMAINS')

arcpy.management.AlterField(ProjectAreaFCA,'OLDGROWTH_POST',new_field_alias =

"Old Growth Post Treatment")

arcpy.management.AlterField(CumulativeFCA,'OLDGROWTH_POST',new_field_alias =

"Old Growth Post Treatment")

#Creates post treatment cover field and gives it a user friendly alias for

reporting in an excel table later.

arcpy.management.CalculateField(ProjectAreaFCB,

'OLDGROWTH_POST','!AGECLASS!','PYTHON3','','','ENFORCE_DOMAINS')

119

arcpy.management.CalculateField(CumulativeFCB,

'OLDGROWTH_POST','!AGECLASS!','PYTHON3','','','ENFORCE_DOMAINS')

arcpy.management.AlterField(ProjectAreaFCB,'OLDGROWTH_POST',new_field_alias =

"Old Growth Post Treatment")

arcpy.management.AlterField(CumulativeFCB,'OLDGROWTH_POST',new_field_alias =

"Old Growth Post Treatment")

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(ProjectAreaFCA,[["ACRES","AREA"]

],"","ACRES")

arcpy.management.CalculateGeometryAttributes(CumulativeFCA,[["ACRES","AREA"]]

,"","ACRES")

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(ProjectAreaFCB,[["ACRES","AREA"]

],"","ACRES")

arcpy.management.CalculateGeometryAttributes(CumulativeFCB,[["ACRES","AREA"]]

,"","ACRES")

#the following Block of code makes custom feature layers that only show

ageclasses in Oldgrowth

OLDCURRENTFLDEA =

arcpy.management.MakeFeatureLayer(ProjectAreaFCA,'1',where_clause ="AGECLASS

IN ('OLD GROWTH')") #new feature layer will only show ageclass stands that

are Oldgrowth. This can be output to the final Geodatabase for map making

later.

OLDCURRENTFLCEA =

arcpy.management.MakeFeatureLayer(CumulativeFCA,'2',where_clause ="AGECLASS

IN ('OLD GROWTH')") #new feature layer will only show ageclass stands that

are Oldgrowth. This will be output to the final Geodatabase for map making

later.

#the following Block of code makes custom feature layers that only show

ageclasses in Oldgrowth

OLDCURRENTFLDEB =

arcpy.management.MakeFeatureLayer(ProjectAreaFCB,'3',where_clause ="AGECLASS

IN ('OLD GROWTH')")#new feature layer will only show ageclass stands that are

Oldgrowth. This can be output to the final Geodatabase for map making later.

OLDCURRENTFLCEB =

arcpy.management.MakeFeatureLayer(CumulativeFCB,'4',where_clause ="AGECLASS

IN ('OLD GROWTH')") #new feature layer will only show ageclass stands that

are Oldgrowth. This can be output to the final Geodatabase for map making

later.

#the following Block of code creates and updates an oldgrowth post treatment

field. Even aged management treatments will take oldgrowht down to 0 to 39

years of age, old growth maintenance will remain old growth, and uneven aged

management treatments will remain at old age, but not maintain oldgrowth

status.

RemoveOLDPOSTFLDEA =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLDEA,'5',where_clause = "Rx IN

('Seed Tree','Clearcut','OSR')")#areas with seed tree clearcut and OSR

treatments will be changed to 000-039 age classification

120

arcpy.management.CalculateField(RemoveOLDPOSTFLDEA, 'OLDGROWTH_POST',"'0 to

39 years at model run'",'PYTHON3','','','')

MaintainOLDPOSTFLDEA =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLDEA,'6',where_clause = "Rx IN

('OGM')")#areas with old growth maintenance (OGM) treatment will retain

oldgrowth status

arcpy.management.CalculateField(MaintainOLDPOSTFLDEA, 'OLDGROWTH_POST',"'Old

growth'",'PYTHON3','','','')

LightOLDPOSTFLDEA =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLDEA,'7',where_clause = "Rx IN

('Individual Tree Select','OGR','Group Select')")#areas with Individual tree

Selection, old growth recruitment (OGR) and Group Select (GS) treatment will

retain old age status but not Oldgrowth status.

arcpy.management.CalculateField(LightOLDPOSTFLDEA, 'OLDGROWTH_POST',"'200+

years at model run - non oldgrowth'",'PYTHON3','','','')

#the following Block of code creates and updates an oldgrowth post treatment

field. Even aged management treatments will take oldgrowht down to 0 to 39

years of age, old growth maintenance will remain old growth, and uneven aged

management treatments will remain at old age, but not maintain oldgrowth

status.

RemoveOLDPOSTFLCEA =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLCEA,'8',where_clause = "Rx IN

('Seed Tree','Clearcut','OSR')")#areas with seed tree clearcut and OSR

treatments will be changed to 000-039 age classification

arcpy.management.CalculateField(RemoveOLDPOSTFLCEA, 'OLDGROWTH_POST',"'0 to

39 years at model run'",'PYTHON3','','','')

MaintainOLDPOSTFLCEA =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLCEA,'9',where_clause = "Rx IN

('OGM')")#areas with old growth maintenance (OGM) treatment will retain

oldgrowth status

arcpy.management.CalculateField(MaintainOLDPOSTFLDEA, 'OLDGROWTH_POST',"'Old

growth'",'PYTHON3','','','')

LightOLDPOSTFLCEA =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLCEA,'10',where_clause = "Rx IN

('Individual Tree Select','OGR','Group Select')")#areas with Individual tree

Selection, old growth recruitment (OGR) and Group Select (GS) treatment will

retain old age status but not Oldgrowth status.

arcpy.management.CalculateField(LightOLDPOSTFLDEA, 'OLDGROWTH_POST',"'200+

years at model run - non oldgrowth'",'PYTHON3','','','')

RemainingOLDPOSTFLCEA =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLCEA,'17',where_clause =

"OLDGROWTH_POST IN ('Old growth')")

RemainingOLDPOSTFLCEB =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLCEB,'18',where_clause =

"OLDGROWTH_POST IN ('Old growth')")

#the following Block of code creates and updates an oldgrowth post treatment

field. Even aged management treatments will take oldgrowht down to 0 to 39

years of age, old growth maintenance will remain old growth, and uneven aged

121

management treatments will remain at old age, but not maintain oldgrowth

status.

RemoveOLDPOSTFLDEB =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLDEB,'11',where_clause = "Rx IN

('Seed Tree','Clearcut','OSR')")#areas with seed tree clearcut and OSR

treatments will be changed to 000-039 age classification

arcpy.management.CalculateField(RemoveOLDPOSTFLDEB, 'OLDGROWTH_POST',"'0 to

39 years at model run'",'PYTHON3','','','')

MaintainOLDPOSTFLDEB =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLDEB,'12',where_clause = "Rx IN

('OGM')")#areas with old growth maintenance (OGM) treatment will retain

oldgrowth status

arcpy.management.CalculateField(MaintainOLDPOSTFLDEB, 'OLDGROWTH_POST',"'Old

growth'",'PYTHON3','','','')

LightOLDPOSTFLDEB =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLDEB,'13',where_clause = "Rx IN

('Individual Tree Select','OGR','Group Select')")#areas with Individual tree

Selection, old growth recruitment (OGR) and Group Select (GS) treatment will

retain old age status but not Oldgrowth status.

arcpy.management.CalculateField(LightOLDPOSTFLDEB, 'OLDGROWTH_POST',"'200+

years at model run - non oldgrowth'",'PYTHON3','','','')

#the following Block of code creates and updates an oldgrowth post treatment

field. Even aged management treatments will take oldgrowth down to 0 to 39

years of age, old growth maintenance will remain old growth, and uneven aged

management treatments will remain at old age, but not maintain oldgrowth

status.

RemoveOLDPOSTFLCEB =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLCEB,'14',where_clause = "Rx IN

('Seed Tree','Clearcut','OSR')")#areas with seed tree clearcut and OSR

treatments will be changed to 000-039 age classification

arcpy.management.CalculateField(RemoveOLDPOSTFLCEB, 'OLDGROWTH_POST',"'0 to

39 years at model run'",'PYTHON3','','','')

MaintainOLDPOSTFLCEB =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLCEB,'15',where_clause = "Rx IN

('OGM')")#areas with old growth maintenance (OGM) treatment will retain

oldgrowth status

arcpy.management.CalculateField(MaintainOLDPOSTFLDEB, 'OLDGROWTH_POST',"'Old

growth'",'PYTHON3','','','')

LightOLDPOSTFLCEB =

arcpy.management.MakeFeatureLayer(OLDCURRENTFLCEB,'16',where_clause = "Rx IN

('Individual Tree Select','OGR','Group Select')")#areas with Individual tree

Selection, old growth recruitment (OGR) and Group Select (GS) treatment will

retain old age status but not Oldgrowth status.

arcpy.management.CalculateField(LightOLDPOSTFLDEB, 'OLDGROWTH_POST',"'200+

years at model run - non oldgrowth'",'PYTHON3','','','')

#summarizes acres of Current Cover and age class of oldgrowth for ALT A

project area and cumulative effects area

122

CurrentOldgrowthDEA =

arcpy.analysis.Statistics(OLDCURRENTFLDEA,"Current_Oldgrowth_CVRtype_DE",[["A

CRES","SUM"]],["AGECLASS","CVR_CURR",])

CurrentOldgrowthCEA =

arcpy.analysis.Statistics(OLDCURRENTFLCEA,"Current_Oldgrowth_CVRtype_CE",[["A

CRES","SUM"]],["AGECLASS","CVR_CURR",])

#summarizes acres of Current cover and age class of oldgrowth for alt A post

treatment for project area and cumulative effects area

PostOldgrowthDEA =

arcpy.analysis.Statistics(OLDCURRENTFLDEA,'ALTA_Post_OG_CVRtype_DE',[["ACRES"

,"SUM"]],["OLDGROWTH_POST","CVR_CURR"])

PostOldgrowthCEA =

arcpy.analysis.Statistics(OLDCURRENTFLCEA,'ALTA_Post_OG_CVRtype_CE',[["ACRES"

,"SUM"]],["OLDGROWTH_POST","CVR_CURR"])

#summarizes acres of Current cover and ageclass for alt B post treatment for

project area and cumulative effects area

PostOldgrowthDEB =

arcpy.analysis.Statistics(OLDCURRENTFLDEB,'ALTB_Post_OG_CVRtype_DE',[["ACRES"

,"SUM"]],["OLDGROWTH_POST","CVR_CURR"])

PostOldgrowthCEB =

arcpy.analysis.Statistics(OLDCURRENTFLCEB,'ALTB_Post_OG_CVRtype_CE',[["ACRES"

,"SUM"]],["OLDGROWTH_POST","CVR_CURR"])

#summarizes acres of old growth and defect risk stands for project area and

cumulative effects area. This output table will show the number of high,

medium, and low risk stands that are being treated with treatment.

RiskOldgrowthDEA =

arcpy.analysis.Statistics(OLDCURRENTFLDEA,"ALTA_Post_OG_Risk_DE",[["ACRES","S

UM"]],["Defect_Risk"])

RiskOldgrowthCEA =

arcpy.analysis.Statistics(OLDCURRENTFLCEA,"ALTA_Post_OG_Risk_CE",[["ACRES","S

UM"]],["Defect_Risk"])

#summarizes acres of old growth and defect risk stands for project area and

cumulative effects area. This output table will show the number of high,

medium, and low risk stands that are being treated with treatment.

RiskOldgrowthDEB =

arcpy.analysis.Statistics(OLDCURRENTFLDEB,"ALTB_Post_OG_Risk_DE",[["ACRES","S

UM"]],["Defect_Risk"])

RiskOldgrowthCEB =

arcpy.analysis.Statistics(OLDCURRENTFLCEB,"ALTB_Post_OG_Risk_CE",[["ACRES","S

UM"]],["Defect_Risk"])

#exports tables to excel usning the table to excel function. Alias and

description keywords allow for the domain names and descriptions to be sent

to the final output excel workbooks. this makes it easier to read in the

final table.

arcpy.conversion.TableToExcel([CurrentOldgrowthDEA,CurrentOldgrowthCEA,PostOl

dgrowthDEA,PostOldgrowthDEB,PostOldgrowthCEA,PostOldgrowthCEB,RiskOldgrowthDE

A,RiskOldgrowthCEA,RiskOldgrowthDEB,RiskOldgrowthCEB],OutFile,'ALIAS','DESCRI

PTION')

123

arcpy.management.CopyFeatures('2','Current_OG_SRSF')#permenatly writes the

current old growth for the Cumulative effects area to the home geodatabase

set in the GIS environment.

arcpy.management.CopyFeatures('8','Removed_OG_AltA')#permenantly writes the

removed old growth for alt a and the Cumulative effects area to the home

goedatabase set in the GIS environment.

arcpy.management.CopyFeatures('17','Remaining_OG_AltA')#permenantly writes

the remaining Old growth post harvest for alt a and the cumulative effects

area to the home geodatabase set in the GIS environment.

arcpy.management.CopyFeatures('14','Removed_OG_AltB')#permenantly writes the

removed old growth post harvest for alt b and the cumulative effects area to

the home geodatabase set in the GIS environment.

arcpy.management.CopyFeatures('18','Remaining_OG_AltB')#permenantly writes

the remaining old growth post harvest for alt b and the cumulative effects

area to the home geodatabase set in the GIS environment.

uses the arcpy management delete function to clean up the temporary and

final files that were not summarized and output into the final excel outfile

location.

arcpy.management.Delete(CurrentOldgrowthDEA)

arcpy.management.Delete(CurrentOldgrowthCEA)

arcpy.management.Delete(PostOldgrowthDEA)

arcpy.management.Delete(PostOldgrowthCEA)

arcpy.management.Delete(PostOldgrowthDEB)

arcpy.management.Delete(PostOldgrowthCEB)

arcpy.management.Delete(RiskOldgrowthDEA)

arcpy.management.Delete(RiskOldgrowthCEA)

arcpy.management.Delete(RiskOldgrowthDEB)

arcpy.management.Delete(RiskOldgrowthCEB)

arcpy.management.Delete(ProjectAreaFCA)

arcpy.management.Delete(CumulativeFCA)

arcpy.management.Delete(ProjectAreaFCB)

arcpy.management.Delete(CumulativeFCB)

124

Geoprocessing fool Python script 7: Age class patch size analysis
import arcpy

arcpy.env.overwriteOutput = True #Allows existing datasets in the workspace

environment to be overwritten.

arcpy.env.transferDomains = True

DEbase = arcpy.GetParameterAsText(0) #Gets user input to set the Direct

Effects area updated timber inventory.

CEbase = arcpy.GetParameterAsText(1) #Gets user input to set the Direct

Effects area updated timber invnentory.

OutFile = arcpy.GetParameterAsText(2) #Gets user input to set the output file

location and name for the Direct Effects Project Area.

NewTreatmentA = arcpy.GetParameterAsText(3) #user defined Alternative A

treatment units.

NewTreatmentB = arcpy.GetParameterAsText(4) #user defined Alternative B

treatment Units.

CurrentAgeclasssizeDE =

arcpy.management.Dissolve(DEbase,'Current_Cover_PatchDE',['AGECLASS'])#uses

the dissolve function to dissolve boundaries between polygons with the same

ageclass attributes. used for current condition age class patch size

calculation.

explodepatchDE =

arcpy.management.MultipartToSinglepart(CurrentAgeclasssizeDE,'Current_Ageclas

s_PatchSize_DE')#uses the multipart to single part function to take the

dissolved age classes and break them back apart so that islands will be

represented in the mean calculation. Used for current condition age class

patch size calculation.

CurrentAgeclasssizeCE =

arcpy.management.Dissolve(CEbase,'Current_Cover_PatchCE',['AGECLASS'])#uses

the dissolve function to dissolve boundaries between polygons with the same

ageclass attributes. used for current condition age class patch size

calculation.

explodepatchCE =

arcpy.management.MultipartToSinglepart(CurrentAgeclasssizeCE,'Current_Ageclas

s_PatchSize_CE') #uses the multipart to single part function to take the

dissolved age classes and break them back apart so that islands will be

represented in the mean calculation. Used for current condition age class

patch size calculation.

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(explodepatchDE,[["ACRES","AREA"]

],"","ACRES")#function parameters calculate acres field with acres.

arcpy.management.CalculateGeometryAttributes(explodepatchCE,[["ACRES","AREA"]

],"","ACRES")#function parameters calculate acres field with acres.

#summarizes acres of habitat type groups for project area and cumulative

effects area

CurrentagepatchmeanDE =

arcpy.analysis.Statistics(explodepatchDE,"CurrentAgeclass_MeanPatch_DE",[["AC

RES","MEAN"]],["AGECLASS"]) #Creates variable that holds the non-spatial

125

table for Direct Effects project area. Parameters calculate the mean acres

from the acres field based on the exploded age class field.

CurrentagepatchmeanCE =

arcpy.analysis.Statistics(explodepatchCE,"CurrentAgeclass_MeanPatch_CE",[["AC

RES","MEAN"]],["AGECLASS"]) #Creates variable that holds the non-spatial

table for Cumulative Effects Project area. Parameters calculate the mean

acres from the acres field based on the exploded age class Field.

#creates union of current SLI and alternative a and B proposed treatment

units

ProjectAreaFCA =

arcpy.analysis.Union([DEbase,NewTreatmentA],'Updated_SLI_Ageclass_DE_AltA')

#unions Alternative A treatment units to the updated DE timber inventory

CumulativeFCA =

arcpy.analysis.Union([CEbase,NewTreatmentA],'Updated_SLI_Ageclass_CE_AltA')

#unions Alternative A treatment units to the updated CE timber inventory

ProjectAreaFCB =

arcpy.analysis.Union([DEbase,NewTreatmentB],'Updated_SLI_Ageclass_DE_AltB')

#unions Alternative B treatment units to the update DE timber inventory

CumulativeFCB =

arcpy.analysis.Union([CEbase,NewTreatmentB],'Updated_SLI_Ageclass_CE_AltB')

#unions Alterative B treatment units to the updated CE timber inventory

#Creates post treatment cover field and gives it a user friendly alias for

reporting in an excel table later.

arcpy.management.CalculateField(ProjectAreaFCA,

'AGECLASS_POST','!AGECLASS!','PYTHON3','','','ENFORCE_DOMAINS') #calculates

new field called AGECLASS_POST to hold changes to current cover for DE

alternative A.

arcpy.management.CalculateField(CumulativeFCA,

'AGECLASS_POST','!AGECLASS!','PYTHON3','','','ENFORCE_DOMAINS') #Calculates

new field called AGECLASS_POST to hold changes to the current cover for CE

alternative A.

arcpy.management.AlterField(ProjectAreaFCA,'AGECLASS_POST',new_field_alias =

"Age Class Post Treatment") #gives new field an easier to read alias.

arcpy.management.AlterField(CumulativeFCA,'AGECLASS_POST',new_field_alias =

"Age Class Post Treatment") #gives new field an easier to read alias.

#Creates post treatment cover field and gives it a user friendly alias for

reporting in an excel table later. #READ COMMENT FIELDS ABOVE, THIS PROCESS

DOES THE SAME THING FOR ALTERNATIVE B

arcpy.management.CalculateField(ProjectAreaFCB,

'AGECLASS_POST','!AGECLASS!','PYTHON3','','','ENFORCE_DOMAINS')#calculates

new field called AGECLASS_POST to hold changes to current cover for DE

alternative B.

arcpy.management.CalculateField(CumulativeFCB,

'AGECLASS_POST','!AGECLASS!','PYTHON3','','','ENFORCE_DOMAINS')#Calculates

new field called AGECLASS_POST to hold changes to the current cover for CE

alternative B.

arcpy.management.AlterField(ProjectAreaFCB,'AGECLASS_POST',new_field_alias =

"Age Class Post Treatment")#gives new field an easier to read alias.

126

arcpy.management.AlterField(CumulativeFCB,'AGECLASS_POST',new_field_alias =

"Age Class Post Treatment")#gives new field an easier to read alias.

#the following Block of code changes the CVR_CURR_POST field to meet the

criteria described in the Data freeze methodology for the direct effects area

AGEPOSTFLDEA =

arcpy.management.MakeFeatureLayer(ProjectAreaFCA,'1',where_clause ="Rx IN

('Seed Tree','Clearcut','OSR')")#uses the make feature layer function to

select treatments with Seed Tree, Clearcut, and OSR treatments.

arcpy.management.CalculateField(AGEPOSTFLDEA, 'AGECLASS_POST',"'0 to 39 years

at model run'",'PYTHON3','','','') #changes ageclass_post to 000-039 if the

Rx meets the criteria above.

#the following Block of code changes the CVR_CURR_POST field to meet the

criteria described in the Data freeze methodology for the direct effects area

AGEPOSTFLDEB =

arcpy.management.MakeFeatureLayer(ProjectAreaFCB,'1',where_clause ="Rx IN

('Seed Tree','Clearcut','OSR')")#uses the make feature layer function to

select treatments with Seed Tree, Clearcut, and OSR treatments.

arcpy.management.CalculateField(AGEPOSTFLDEB, 'AGECLASS_POST',"'0 to 39 years

at model run'",'PYTHON3','','','')#changes ageclass_post to 000-039 if the Rx

meets the criteria above.

#the following Block of code changes the CVR_CURR_POST field to meet the

criteria described in the Data freeze methodology

AGEPOSTFLCEA =

arcpy.management.MakeFeatureLayer(CumulativeFCA,'2',where_clause ="Rx IN

('Seed Tree','Clearcut','OSR')")#uses the make feature layer function to

select treatments with Seed Tree, Clearcut, and OSR treatments.

arcpy.management.CalculateField(AGEPOSTFLCEA, 'AGECLASS_POST',"'0 to 39 years

at model run'",'PYTHON3','','','')#changes ageclass_post to 000-039 if the Rx

meets the criteria above.

#the following Block of code changes the CVR_CURR_POST field to meet the

criteria described in the Data freeze methodology

AGEPOSTFLCEB =

arcpy.management.MakeFeatureLayer(CumulativeFCB,'2',where_clause ="Rx IN

('Seed Tree','Clearcut','OSR')")#uses the make feature layer function to

select treatments with Seed Tree, Clearcut, and OSR treatments.

arcpy.management.CalculateField(AGEPOSTFLCEB, 'AGECLASS_POST',"'0 to 39 years

at model run'",'PYTHON3','','','')#changes ageclass_post to 000-039 if the Rx

meets the criteria above.

PostagepatchsizeDEA =

arcpy.management.Dissolve(ProjectAreaFCA,'AltA_Post_Age_PatchDE',['AGECLASS_P

OST'])#uses the dissolve function to dissolve boundaries between polygons

with the same ageclass attributes. used for post condition age class post

patch size calculation.

PostageexplodepatchDEA =

arcpy.management.MultipartToSinglepart(PostagepatchsizeDEA,'AltA_Post_age_Pat

chSize_DE')#uses the multipart to single part function to take the dissolved

post age classes and break them back apart so that islands will be

127

represented in the mean calculation. Used for post condition age class patch

size calculation.

PostagepatchsizeCEA =

arcpy.management.Dissolve(CumulativeFCA,'AltA_Post_Age_PatchCE',['AGECLASS_PO

ST'])#uses the dissolve function to dissolve boundaries between polygons with

the same ageclass attributes. used for post condition age class post patch

size calculation.

PostageexplodepatchCEA =

arcpy.management.MultipartToSinglepart(PostagepatchsizeCEA,'AltA_Post_age_Pat

chSize')#uses the multipart to single part function to take the dissolved

post age classes and break them back apart so that islands will be

represented in the mean calculation. Used for post condition age class patch

size calculation.

PostagepatchsizeDEB =

arcpy.management.Dissolve(ProjectAreaFCB,'AltB_Post_Age_PatchDE',['AGECLASS_P

OST'])#uses the dissolve function to dissolve boundaries between polygons

with the same ageclass attributes. used for post condition age class post

patch size calculation.

PostageexplodepatchDEB =

arcpy.management.MultipartToSinglepart(PostagepatchsizeDEB,'AltB_Post_age_Pat

chSize_DE')#uses the multipart to single part function to take the dissolved

post age classes and break them back apart so that islands will be

represented in the mean calculation. Used for post condition age class patch

size calculation.

PostagepatchsizeCEB =

arcpy.management.Dissolve(CumulativeFCB,'AltB_Post_Age_PatchCE',['AGECLASS_PO

ST'])#uses the dissolve function to dissolve boundaries between polygons with

the same ageclass attributes. used for post condition age class post patch

size calculation.

PostageexplodepatchCEB =

arcpy.management.MultipartToSinglepart(PostagepatchsizeCEB,'AltB_Post_age_Pat

chSize')#uses the multipart to single part function to take the dissolved

post age classes and break them back apart so that islands will be

represented in the mean calculation. Used for post condition age class patch

size calculation.

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(PostageexplodepatchDEA,[["ACRES"

,"AREA"]],"","ACRES")

arcpy.management.CalculateGeometryAttributes(PostageexplodepatchCEA,[["ACRES"

,"AREA"]],"","ACRES")

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(PostageexplodepatchDEB,[["ACRES"

,"AREA"]],"","ACRES")

arcpy.management.CalculateGeometryAttributes(PostageexplodepatchCEB,[["ACRES"

,"AREA"]],"","ACRES")

#summarizes acres of habitat type groups for project area and cumulative

effects area

128

PostagepatchmeanDEA =

arcpy.analysis.Statistics(PostageexplodepatchDEA,"AltA_PostAgeclass_MeanPatch

_DE",[["ACRES","MEAN"]],["AGECLASS_POST"]) #Creates variable that holds the

non-spatial table for Direct Effects project area. Parameters calculate mean

acres from the acres field based on the ageclass_post Field.

PostagepatchmeanCEA =

arcpy.analysis.Statistics(PostageexplodepatchCEA,"AltA_PostAgeclass_MeanPatch

_CE",[["ACRES","MEAN"]],["AGECLASS_POST"]) #Creates variable that holds the

non-spatial table for Cumulative Effects Project area. Parameters calculate

mean acres from the acres field based on the ageclass_post Field.

#summarizes acres of habitat type groups for project area and cumulative

effects area

PostagepatchmeanDEB =

arcpy.analysis.Statistics(PostageexplodepatchDEB,"AltB_PostAgeclass_MeanPatch

_DE",[["ACRES","MEAN"]],["AGECLASS_POST"]) #Creates variable that holds the

non-spatial table for Direct Effects project area. Parameters sum the acres

from the acres field based on the Habitat Type Group Field.

PostagepatchmeanCEB =

arcpy.analysis.Statistics(PostageexplodepatchCEB,"ALTB_PostAgeclass_MeanPatch

_CE",[["ACRES","MEAN"]],["AGECLASS_POST"]) #Creates variable that holds the

non-spatial table for Cumulative Effects Project area. Parameters sum the

acres from the acres field based on the Habitat Type Group Field.

#Converts non spatial tables from above block of code into Excel files for ID

team use.

arcpy.conversion.TableToExcel([CurrentagepatchmeanDE,PostagepatchmeanDEA,Post

agepatchmeanDEB,CurrentagepatchmeanCE,PostagepatchmeanCEA,PostagepatchmeanCEB

],OutFile,'ALIAS','DESCRIPTION') #Parameters from function set "in" non

spatial table, the output file path/location, and (ALIAS, DESCRIPTION) export

row headers and domain names for field attributes into the final excel table.

#uses the arcpy delete function to get rid of non spatial datasets that were

exported to the output excel files. Current ageclass patch size and Post age

class patch size will be output to the workspace geodatabase.

arcpy.management.Delete([PostageexplodepatchDEA,PostageexplodepatchDEB,Projec

tAreaFCA,CumulativeFCA,ProjectAreaFCB,CumulativeFCB,explodepatchDE])

arcpy.management.Delete([CurrentAgeclasssizeDE,CurrentAgeclasssizeCE,Currenta

gepatchmeanDE,CurrentagepatchmeanCE,PostagepatchsizeDEA,PostagepatchsizeCEA,P

ostagepatchsizeDEB,PostagepatchsizeCEB,PostagepatchmeanDEA,PostagepatchmeanCE

A,PostagepatchmeanDEB,PostagepatchmeanCEB])

129

Geoprocessing tool Python script 8: Cover patch size analysis
import arcpy

arcpy.env.overwriteOutput = True #Allows existing datasets in the workspace

environment to be overwritten.

arcpy.env.transferDomains = True

DEbase = arcpy.GetParameterAsText(0) #Gets user input to set the Direct

Effects area updated timber inventory.

CEbase = arcpy.GetParameterAsText(1) #Gets user input to set the Direct

Effects area updated timber invnentory.

OutFile = arcpy.GetParameterAsText(2) #Gets user input to set the output file

location and name for the Direct Effects Project Area.

NewTreatmentA = arcpy.GetParameterAsText(3) #user defined Alternative A

treatment units.

NewTreatmentB = arcpy.GetParameterAsText(4) #user defined Alternative B

treatment Units.

CurrentpatchsizeDE =

arcpy.management.Dissolve(DEbase,'Current_Cover_PatchDE',['CVR_CURR']) #uses

the dissolve function to dissolve boundaries between covertypes that share

attribute values.

explodepatchDE =

arcpy.management.MultipartToSinglepart(CurrentpatchsizeDE,'Current_Cover_Patc

hSize_DE')#uses the multipart to single part features to identify islands so

that the true mean patch size can be calculated later.

CurrentpatchsizeCE =

arcpy.management.Dissolve(CEbase,'Current_Cover_PatchCE',['CVR_CURR'])#uses

the dissolve function to dissolve boundaries between covertypes that share

attribute values.

explodepatchCE =

arcpy.management.MultipartToSinglepart(CurrentpatchsizeCE,'Current_Cover_Patc

hSize_CE')#uses the multipart to single part features to identify islands so

that the true mean patch size can be calculated later.

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(explodepatchDE,[["ACRES","AREA"]

],"","ACRES")#function parameters calculate acres field with acres.

arcpy.management.CalculateGeometryAttributes(explodepatchCE,[["ACRES","AREA"]

],"","ACRES")#function parameters calculate acres field with acres.

#summarizes acres of habitat type groups for project area and cumulative

effects area

CurrentcoverpatchmeanDE =

arcpy.analysis.Statistics(explodepatchDE,"CurrentCovertype_MeanPatch_DE",[["A

CRES","MEAN"]],["CVR_CURR"]) #Creates variable that holds the non-spatial

table for Direct Effects project area. Parameters sum the acres from the

acres field based on the Habitat Type Group Field.

CurrentcoverpatchmeanCE =

arcpy.analysis.Statistics(explodepatchCE,"CurrentCovertyp_MeanPatch_CE",[["AC

RES","MEAN"]],["CVR_CURR"]) #Creates variable that holds the non-spatial

table for Cumulative Effects Project area. Parameters sum the acres from the

acres field based on the Habitat Type Group Field.

130

#creates union of current SLI and alternative a and B proposed treatment

units

ProjectAreaFCA =

arcpy.analysis.Union([DEbase,NewTreatmentA],'Updated_SLI_CoverType_DE_AltA')

#unions Alternative A treatment units to the updated DE timber inventory

CumulativeFCA =

arcpy.analysis.Union([CEbase,NewTreatmentA],'Updated_SLI_CoverType_CE_AltA')

#unions Alternative A treatment units to the updated CE timber inventory

ProjectAreaFCB =

arcpy.analysis.Union([DEbase,NewTreatmentB],'Updated_SLI_CoverType_DE_AltB')

#unions Alternative B treatment units to the update DE timber inventory

CumulativeFCB =

arcpy.analysis.Union([CEbase,NewTreatmentB],'Updated_SLI_CoverType_CE_AltB')

#unions Alterative B treatment units to the updated CE timber inventory

#Creates post treatment cover field and gives it a user friendly alias for

reporting in an excel table later.

arcpy.management.CalculateField(ProjectAreaFCA,

'CVR_CURR_POST','!CVR_CURR!','PYTHON3','','','ENFORCE_DOMAINS') #calculates

new field called CVR_CURR_POST to hold changes to current cover for DE

alternative A.

arcpy.management.CalculateField(CumulativeFCA,

'CVR_CURR_POST','!CVR_CURR!','PYTHON3','','','ENFORCE_DOMAINS') #Calculates

new field called CVR_CURR_POST to hold changes to the current cover for CE

alternative A.

arcpy.management.AlterField(ProjectAreaFCA,'CVR_CURR_POST',new_field_alias =

"Cover Type Post Treatment") #gives new field an easier to read alias.

arcpy.management.AlterField(CumulativeFCA,'CVR_CURR_POST',new_field_alias =

"Cover Type Post Treatment") #gives new field an easier to read alias.

#Creates post treatment cover field and gives it a user friendly alias for

reporting in an excel table later. #READ COMMENT FIELDS ABOVE, THIS PROCESS

DOES THE SAME THING FOR ALTERNATIVE B

arcpy.management.CalculateField(ProjectAreaFCB,

'CVR_CURR_POST','!CVR_CURR!','PYTHON3','','','ENFORCE_DOMAINS')

arcpy.management.CalculateField(CumulativeFCB,

'CVR_CURR_POST','!CVR_CURR!','PYTHON3','','','ENFORCE_DOMAINS')

arcpy.management.AlterField(ProjectAreaFCB,'CVR_CURR_POST',new_field_alias =

"Cover Type Post Treatment")

arcpy.management.AlterField(CumulativeFCB,'CVR_CURR_POST',new_field_alias =

"Cover Type Post Treatment")

#the following Block of code changes the CVR_CURR_POST field to meet the

criteria described in the Data freeze methodology for the direct effects area

CVRPOSTFLDEA =

arcpy.management.MakeFeatureLayer(ProjectAreaFCA,'1',where_clause ="Rx IN

('Seed Tree','Group Select','Shelterwood', 'OSR')") #uses temporary feature

layer to select affected treatments.

arcpy.management.CalculateField(CVRPOSTFLDEA, 'CVR_CURR_POST',

'!MAJPOTVEG!','PYTHON3','','','ENFORCE_DOMAINS') #changes current cover post

field to equal major potential vegetation based on criteria above.

131

#the following Block of code changes the CVR_CURR_POST field to meet the

criteria described in the Data freeze methodology for the direct effects area

CVRPOSTFLDEB =

arcpy.management.MakeFeatureLayer(ProjectAreaFCB,'2',where_clause ="Rx IN

('Seed Tree','Group Select','Shelterwood', 'OSR')")#uses temporary feature

layer to select affected treatments.

arcpy.management.CalculateField(CVRPOSTFLDEB, 'CVR_CURR_POST',

'!MAJPOTVEG!','PYTHON3','','','ENFORCE_DOMAINS') #changes current cover post

field to equal major potential vegetation based on criteria above.

#the following Block of code changes the CVR_CURR_POST field to meet the

criteria described in the Data freeze methodology

CVRPOSTFLCEA =

arcpy.management.MakeFeatureLayer(CumulativeFCA,'3',where_clause ="Rx IN

('Seed Tree','Group Select','Shelterwood', 'OSR')")#uses temporary feature

layer to select affected treatments.

arcpy.management.CalculateField(CVRPOSTFLCEA, 'CVR_CURR_POST',

'!MAJPOTVEG!','PYTHON3','','','ENFORCE_DOMAINS') #changes current cover post

field to equal major potential vegetation based on criteria above.

#the following Block of code changes the CVR_CURR_POST field to meet the

criteria described in the Data freeze methodology

CVRPOSTFLCEB =

arcpy.management.MakeFeatureLayer(CumulativeFCB,'4',where_clause ="Rx IN

('Seed Tree','Group Select','Shelterwood', 'OSR')")#uses temporary feature

layer to select affected treatments.

arcpy.management.CalculateField(CVRPOSTFLCEB, 'CVR_CURR_POST',

'!MAJPOTVEG!','PYTHON3','','','ENFORCE_DOMAINS') #changes current cover post

field to equal major potential vegetation based on criteria above.

PostpatchsizeDEA =

arcpy.management.Dissolve(ProjectAreaFCA,'AltA_Post_Cover_PatchDE',['CVR_CURR

_POST'])#uses the dissolve function to dissolve boundaries between post

harvest covertypes that share attribute values.

PostexplodepatchDEA =

arcpy.management.MultipartToSinglepart(PostpatchsizeDEA,'AltA_Post_Cover_Patc

hSize_DE')#uses the multipart to single part features to identify islands so

that the true mean patch size can be calculated later.

PostpatchsizeCEA =

arcpy.management.Dissolve(CumulativeFCA,'AltA_Post_Cover_PatchCE',['CVR_CURR_

POST'])#uses the dissolve function to dissolve boundaries between post

harvest covertypes that share attribute values.

PostexplodepatchCEA =

arcpy.management.MultipartToSinglepart(PostpatchsizeCEA,'AltA_Post_Cover_Patc

hSize')#uses the multipart to single part features to identify islands so

that the true mean patch size can be calculated later.

PostpatchsizeDEB =

arcpy.management.Dissolve(ProjectAreaFCB,'AltB_Post_Cover_PatchDE',['CVR_CURR

_POST'])#uses the dissolve function to dissolve boundaries between post

harvest covertypes that share attribute values.

132

PostexplodepatchDEB =

arcpy.management.MultipartToSinglepart(PostpatchsizeDEB,'AltB_Post_Cover_Patc

hSize_DE')#uses the multipart to single part features to identify islands so

that the true mean patch size can be calculated later.

PostpatchsizeCEB =

arcpy.management.Dissolve(CumulativeFCB,'AltB_Post_Cover_PatchCE',['CVR_CURR_

POST'])#uses the dissolve function to dissolve boundaries between post

harvest covertypes that share attribute values.

PostexplodepatchCEB =

arcpy.management.MultipartToSinglepart(PostpatchsizeCEB,'AltB_Post_Cover_Patc

hSize')#uses the multipart to single part features to identify islands so

that the true mean patch size can be calculated later.

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(PostexplodepatchDEA,[["ACRES","A

REA"]],"","ACRES")

arcpy.management.CalculateGeometryAttributes(PostexplodepatchCEA,[["ACRES","A

REA"]],"","ACRES")

#Calculates area for polygons from user inputs.

arcpy.management.CalculateGeometryAttributes(PostexplodepatchDEB,[["ACRES","A

REA"]],"","ACRES")

arcpy.management.CalculateGeometryAttributes(PostexplodepatchCEB,[["ACRES","A

REA"]],"","ACRES")

#summarizes acres of habitat type groups for project area and cumulative

effects area

PostcoverpatchmeanDEA =

arcpy.analysis.Statistics(PostexplodepatchDEA,"AltA_PostCovertype_MeanPatch_D

E",[["ACRES","MEAN"]],["CVR_CURR_POST"]) #Creates variable that holds the

non-spatial table for Direct Effects project area. Parameters sum the acres

from the acres field based on the Habitat Type Group Field.

PostcoverpatchmeanCEA =

arcpy.analysis.Statistics(PostexplodepatchCEA,"AltA_PostCovertype_MeanPatch_C

E",[["ACRES","MEAN"]],["CVR_CURR_POST"]) #Creates variable that holds the

non-spatial table for Cumulative Effects Project area. Parameters sum the

acres from the acres field based on the Habitat Type Group Field.

#summarizes acres of habitat type groups for project area and cumulative

effects area

PostcoverpatchmeanDEB =

arcpy.analysis.Statistics(PostexplodepatchDEB,"AltB_PostCovertype_MeanPatch_D

E",[["ACRES","MEAN"]],["CVR_CURR_POST"]) #Creates variable that holds the

non-spatial table for Direct Effects project area. Parameters sum the acres

from the acres field based on the Habitat Type Group Field.

PostcoverpatchmeanCEB =

arcpy.analysis.Statistics(PostexplodepatchCEB,"ALTB_PostCovertype_MeanPatch_C

E",[["ACRES","MEAN"]],["CVR_CURR_POST"]) #Creates variable that holds the

non-spatial table for Cumulative Effects Project area. Parameters sum the

acres from the acres field based on the Habitat Type Group Field.

#Converts non spatial tables from above block of code into Excel files for ID

team use.

133

arcpy.conversion.TableToExcel([CurrentcoverpatchmeanDE,PostcoverpatchmeanDEA,

PostcoverpatchmeanDEB,CurrentcoverpatchmeanCE,PostcoverpatchmeanCEA,Postcover

patchmeanCEB],OutFile,'ALIAS','DESCRIPTION') #Parameters from function set

"in" non spatial table, the output file path/location, and (ALIAS,

DESCRIPTION) export row headers and domain names for field attributes into

the final excel table.

#uses the delete function to clean up already output excel tables. Program

will not delete current and post cover patch size feature classes. They will

be used for mapmaking in the EIS.

arcpy.management.Delete([PostexplodepatchDEA,PostexplodepatchDEB])

arcpy.management.Delete([ProjectAreaFCA,CumulativeFCA,ProjectAreaFCB,Cumulati

veFCB,CurrentpatchsizeDE,CurrentpatchsizeCE,CurrentcoverpatchmeanDE,Currentco

verpatchmeanCE,PostpatchsizeDEA,PostpatchsizeCEA,PostpatchsizeDEB,Postpatchsi

zeCEB,PostcoverpatchmeanDEA,PostcoverpatchmeanCEA,PostcoverpatchmeanDEB,Postc

overpatchmeanCEB,explodepatchDE])

