Research
Virtual Visit Request info Apply
MENUMENU
  • Office of the Vice President
    • Vision and Mission
    • RCA Awards
    • Staff Directory
  • Office of Sponsored Projects
  • Funding
    • Overview
    • TRIF
  • Safety, Compliance, & IRB
    • Overview
    • Environmental Health and Safety
    • Animal Care
    • Human Research Protection Program (IRB)
    • Research Integrity
    • Export Control
    • NAUS Culture of Safety
    • Policies
  • NAU Innovations
  • Services & Facilities
  • Research News
  • NAU
  • Research
  • News about research and scholarly activities

When it comes to global plant production, new study suggests phosphorus matters everywhere

Posted by Heather Tate on March 30, 2020

Challenging long-held assumptions that phosphorus limits aboveground plant growth mainly in tropical regions, a new paper in Nature Communications by NAU authors suggests that this important nutrient actually helps govern plant production in temperate regions, too, and on every continent except Antarctica.


Analyzing data from phosphorus field experiments conducted worldwide between 1955-2017, authors Enqing Hou, Yiqi Luo, and Lifen Jiang of the Center for Ecosystem Science and Society at NAU and researchers from the South China Botanical Garden of the Chinese Academy of Sciences saw significant phosphorus effects globally, from sub-arctic and temperate zones to the tropics and in every major type of terrestrial ecosystem: croplands, forests, grasslands, tundras, and wetlands. According to the authors, nearly half (46.2%) of 652 P-addition field experiments revealed a significant phosphorus limitation on aboveground plant production. And when phosphorus was added, the effect was large: phosphorus additions increased aboveground plant production by more than a third (34.9%) in natural terrestrial ecosystems—7.0–15.9% higher than previously suggested.

Along with sunlight and water, terrestrial plants need nitrogen and phosphorus to grow. And as researchers investigate plants’ critical role in regulating the Earth’s temperature and carbon storage capacity, the part that these nutrients play—and their importance compared to other limiting factors—is key to understanding how ecosystems across the globe will function in this century and the next.

“These results highlight the critical role phosphorus plays in terrestrial plant growth around the globe,” Hou said. “While our findings don’t call for phosphorus fertilization, which may cause the loss of biodiversity, we do need to build phosphorus limitation into terrestrial ecosystem models and the way we think about global plant production.”

Because the research community has historically considered phosphorus limitation a primarily tropical phenomenon, phosphorus has not been factored in to important global terrestrial ecosystem models—the programs that predict how much carbon Earth will ‘inhale’ (sink) and ‘exhale’ (‘source’) each year. These models are used by policymakers and others to make important climate and agricultural decisions. Hou’s study makes a strong case for incorporating phosphorus into such models, since the way the element limits plant growth ultimately affects how much carbon plants can store, and thus, the potential of the global carbon ‘sink’ in future years.

Hou’s work is part of a larger project of the Luo lab to incorporate observational data into terrestrial ecosystem models and, in doing so, make them more accurate and globally relevant. By recasting phosphorus’s role in the global plant growth picture, Hou’s analysis underscores the importance of building and refining terrestrial ecosystem models like Luo’s, ones which rely on data-model fusion to make better predictions about how much carbon the earth can store now and in the future.


NAU logo

Kate Petersen | Center for Ecosystem Science and Society
(928) 523-2982 | kate.petersen@nau.edu

Filed Under: Center for Ecosystem Science and Society, College of the Environment, Forestry, and Natural Sciences, Department of Biological Sciences

Categories

Tags

Arctic Arizona State University astronomy Ben Ruddell Bruce Hungate carbon Christopher Edwards climate change coronavirus COVID-19 COVID-19 research data David Trilling disease DNA ecosystem ecosystems Egbert Schwartz environment Greg Caporaso Julie Baldwin Kevin Gurney Mars Michelle Mack microbes NASA National Institutes of Health National Science Foundation NAU NAU Research Navajo Nation Northern Arizona University pandemic Pathogen and Microbiome Institute Paul Keim planetary science PMI public health research scientists Scott Goetz soil solar system STEM Ted Schuur

Archives

Research Impact
Location
Room - 4th floor, Building 20
Science Annex
525 S Beaver Street
Flagstaff, AZ 86011-4087
Mailing Address
PO Box 4087
Flagstaff, AZ 86011-4087
Contact Form
Email
ovpr@nau.edu
Phone
928-523-4340
Social Media
Visit us on Twitter Facebook LinkedIn