Research
Virtual Visit Request info Apply
MENUMENU
  • Office of the Vice President
    • Vision and Mission
    • RCA Awards
    • Staff Directory
  • Office of Sponsored Projects
  • Funding
    • Overview
    • TRIF
  • Safety & Compliance
    • Overview
    • Environmental Health and Safety
    • Animal Care
    • Human Research Protection Program
    • Research Integrity
    • Export Control
    • NAUS Culture of Safety
    • Policies
  • NAU Innovations
  • About
    • Services and Facilities
  • Research News
  • Events
  • NAU
  • Research
  • News about research and scholarly activities

NAU astrophysicist leads international team in ‘unprecedented’ discovery of unique infrared light signature on Neptune’s moon Triton

Posted by Heather Tate on July 29, 2019

Image of Triton showing the moon's south polar region.
Voyager 2 image of Triton showing the moon’s south polar region. Credit: NASA/JPL

Triton orbits Neptune, the eighth planet from the Sun, some 2.7 billion miles from Earth — at the cold outer fringe of our Solar System’s major planet zone. Surface temperatures hover near absolute zero; so low that common compounds we know as gases on Earth freeze into ices. Triton’s atmosphere, which is 70,000 times less dense than Earth’s, is composed of nitrogen, methane and carbon monoxide.

These extreme conditions have led to an extraordinary discovery on Triton. An international team of scientists used the 8-meter Gemini South Telescope in Chile to pinpoint a very specific type of infrared light signature produced when carbon monoxide and nitrogen molecules join together and vibrate in unison. Individually, carbon monoxide and nitrogen ices each absorb their own distinct wavelengths of infrared light, but the tandem vibration of an ice mixture absorbs at an additional, distinct wavelength identified in this study.

The discovery, recently published in the Astronomical Journal, offers insights into how this volatile mixture can transport material across the moon’s surface via geysers, trigger seasonal atmospheric changes and provide a context for conditions on other distant, icy worlds.

“While the icy spectral fingerprint we uncovered was entirely reasonable, especially as this combination of ices can be created in the lab, pinpointing this specific wavelength of infrared light on another world is unprecedented,” said NAU professor Stephen Tegler, who led the study, collaborating with Will Grundy and Jennifer Hanley of Lowell Observatory. Other co-authors from NAU are Terry Stufflebeam, Shyanne Dustrud, Gerrick Lindberg, Anna Engle, Thomas Dillingham, Daniel Matthew and David Trilling.

In the Earth’s atmosphere, carbon monoxide and nitrogen molecules exist as gasses, not ices. In fact, molecular nitrogen is the dominant gas in the air we breathe, and carbon monoxide is a rare contaminant that can be lethal. On distant Triton, however, carbon monoxide and nitrogen freeze solid as ices. They can form their own independent ices, or can condense together in the icy mix detected in the Gemini data. This icy mix could be involved in Triton’s iconic geysers first seen in Voyager 2 spacecraft images as dark, windblown streaks on the surface of the distant, icy moon.

Looking ahead, the researchers expect that these findings will shed light on the composition of ices on other distant worlds beyond Neptune. Astronomers have suspected that the mixing of carbon monoxide and nitrogen ice exists not only on Triton, but also on Pluto, where the New Horizons spacecraft found the two ices coexisting. This Gemini finding is the first direct spectroscopic evidence of these ices mixing and absorbing this type of light on either world.

Tegler studies ices relevant to the surfaces of Kuiper Belt Objects in the Astrophysical Ice Laboratory using transmission and Raman spectroscopy. The laboratory is a collaboration between Lowell Observatory and NAU’s Department of Physics and Astronomy, which facilitates studies of cryogenic outer solar system materials, such as the methane and nitrogen ices that dominate the surfaces of Pluto, Triton, Eris and Makemake, and the ethane-methane-nitrogen liquids that flow across the surface of Titan.

The laboratory consists of two experimental stations, one for vapor deposition of thin ice films, and one for more massive samples of cryogenic liquids and ices up to 2 cm thick. Instruments used to analyze cryogenic materials include Fourier-transform infrared spectroscopy, mass spectroscopy and X-ray photoelectron spectroscopy.


NAU logo

Kerry Bennett | Office of the Vice President for Research
(928) 523-5556 | kerry.bennett@nau.edu

Filed Under: College of the Environment, Forestry, and Natural Sciences, Department of Astronomy and Planetary Science

Categories

Tags

Arctic Arizona Arizona State University astronomy bacteria Ben Ruddell Bruce Hungate cancer carbon Christopher Edwards climate change coronavirus COVID-19 COVID-19 research data David Trilling disease DNA ecosystem ecosystems environment Greg Caporaso Julie Baldwin Kevin Gurney Mars Michelle Mack microbes NASA National Institutes of Health National Science Foundation Navajo Nation Northern Arizona University pandemic Pathogen and Microbiome Institute Paul Keim planetary science public health research scientists Scott Goetz soil solar system STEM Ted Schuur TGen

Archives

Boundless Impact
Location
Room - 4th floor, Building 20
Science Annex
525 S Beaver Street
Flagstaff, AZ 86011-4087
Mailing Address
PO Box 4087
Flagstaff, AZ 86011-4087
Contact Form
Email
ovpr@nau.edu
Phone
928-523-4340
Social Media
Visit us on Twitter Facebook LinkedIn